scispace - formally typeset
Search or ask a question

Showing papers by "Chantal B.E.M. Reusken published in 2013"


Journal ArticleDOI
TL;DR: Both titres and seroprevalences in sera from different locations in Oman suggest widespread infection of camel populations, and possible animal reservoirs of MERS-CoV are investigated by assessing specific serum antibodies in livestock.
Abstract: Summary Background A new betacoronavirus—Middle East respiratory syndrome coronavirus (MERS-CoV)—has been identified in patients with severe acute respiratory infection. Although related viruses infect bats, molecular clock analyses have been unable to identify direct ancestors of MERS-CoV. Anecdotal exposure histories suggest that patients had been in contact with dromedary camels or goats. We investigated possible animal reservoirs of MERS-CoV by assessing specific serum antibodies in livestock. Methods We took sera from animals in the Middle East (Oman) and from elsewhere (Spain, Netherlands, Chile). Cattle (n=80), sheep (n=40), goats (n=40), dromedary camels (n=155), and various other camelid species (n=34) were tested for specific serum IgG by protein microarray using the receptor-binding S1 subunits of spike proteins of MERS-CoV, severe acute respiratory syndrome coronavirus, and human coronavirus OC43. Results were confirmed by virus neutralisation tests for MERS-CoV and bovine coronavirus. Findings 50 of 50 (100%) sera from Omani camels and 15 of 105 (14%) from Spanish camels had protein-specific antibodies against MERS-CoV spike. Sera from European sheep, goats, cattle, and other camelids had no such antibodies. MERS-CoV neutralising antibody titres varied between 1/320 and 1/2560 for the Omani camel sera and between 1/20 and 1/320 for the Spanish camel sera. There was no evidence for cross-neutralisation by bovine coronavirus antibodies. Interpretation MERS-CoV or a related virus has infected camel populations. Both titres and seroprevalences in sera from different locations in Oman suggest widespread infection. Funding European Union, European Centre For Disease Prevention and Control, Deutsche Forschungsgemeinschaft.

685 citations


Journal ArticleDOI
TL;DR: Viruses related to the novel human betacoronavirus EMC/2012 originated from bats, and their genetic relatedness indicated E MC/2012 originate from bats.
Abstract: We screened fecal specimens of 4,758 bats from Ghana and 272 bats from 4 European countries for betacoronaviruses. Viruses related to the novel human betacoronavirus EMC/2012 were detected in 46 (24.9%) of 185 Nycteris bats and 40 (14.7%) of 272 Pipistrellus bats. Their genetic relatedness indicated EMC/2012 originated from bats.

316 citations


Journal ArticleDOI
TL;DR: Between June and September 2013, sera from 11 dromedary camels, 150 goats, 126 sheep and 91 cows were collected in Jordan, where the first human Middle-East respiratory syndrome (MERS) cluster appeared in 2012, and neutralising antibodies were found in all camel sera.
Abstract: Between June and September 2013, sera from 11 dromedary camels, 150 goats, 126 sheep and 91 cows were collected in Jordan, where the first human Middle-East respiratory syndrome (MERS) cluster appeared in 2012. All sera were tested for MERS-coronavirus (MERS-CoV) specific antibodies by protein microarray with confirmation by virus neutralisation. Neutralising antibodies were found in all camel sera while sera from goats and cattle tested negative. Although six sheep sera reacted with MERS-CoV antigen, neutralising antibodies were not detected.

194 citations


Journal ArticleDOI
TL;DR: The so-far largest collection of small-mammal samples from around the world qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species) supported classification of all viruses as hepaciviruses.
Abstract: Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species). Three highly divergent rodent hepacivirus clades were detected in 27 (1.8%) of 1,465 European bank voles (Myodes glareolus) and 10 (1.9%) of 518 South African four-striped mice (Rhabdomys pumilio). Bats showed anti-HCV immunoblot reactivities but no virus detection, although the genetic relatedness suggested by the serologic results should have enabled RNA detection using the broadly reactive PCR assays developed for this study. 210 horses and 858 cats and dogs were tested, yielding further horse-associated hepaciviruses but none in dogs or cats. The rodent viruses were equidistant to HCV, exceeding by far the diversity of HCV and the canine/equine hepaciviruses taken together. Five full genomes were sequenced, representing all viral lineages. Salient genome features and distance criteria supported classification of all viruses as hepaciviruses. Quantitative RT-PCR, RNA in-situ hybridisation, and histopathology suggested hepatic tropism with liver inflammation resembling hepatitis C. Recombinant serology for two distinct hepacivirus lineages in 97 bank voles identified seroprevalence rates of 8.3 and 12.4%, respectively. Antibodies in bank vole sera neither cross-reacted with HCV, nor the heterologous bank vole hepacivirus. Co-occurrence of RNA and antibodies was found in 3 of 57 PCR-positive bank vole sera (5.3%). Our data enable new hypotheses regarding HCV evolution and encourage efforts to develop rodent surrogate models for HCV.

190 citations