scispace - formally typeset
Search or ask a question

Showing papers by "Daniel McDonald published in 2010"


Journal ArticleDOI
TL;DR: An overview of the analysis pipeline and links to raw data and processed output from the runs with and without denoising are provided.
Abstract: Supplementary Figure 1 Overview of the analysis pipeline. Supplementary Table 1 Details of conventionally raised and conventionalized mouse samples. Supplementary Discussion Expanded discussion of QIIME analyses presented in the main text; Sequencing of 16S rRNA gene amplicons; QIIME analysis notes; Expanded Figure 1 legend; Links to raw data and processed output from the runs with and without denoising.

28,911 citations


Journal ArticleDOI
TL;DR: A series of studies introduces a forensics approach that could eventually be used to independently evaluate results obtained using more traditional forensic practices, and can use a high-throughput pyrosequencing-based approach to quantitatively compare the bacterial communities on objects and skin to match the object to the individual with a high degree of certainty.
Abstract: Recent work has demonstrated that the diversity of skin-associated bacterial communities is far higher than previously recognized, with a high degree of interindividual variability in the composition of bacterial communities. Given that skin bacterial communities are personalized, we hypothesized that we could use the residual skin bacteria left on objects for forensic identification, matching the bacteria on the object to the skin-associated bacteria of the individual who touched the object. Here we describe a series of studies de-monstrating the validity of this approach. We show that skin-associated bacteria can be readily recovered from surfaces (including single computer keys and computer mice) and that the structure of these communities can be used to differentiate objects handled by different individuals, even if those objects have been left untouched for up to 2 weeks at room temperature. Furthermore, we demonstrate that we can use a high-throughput pyrosequencing-based ap-proach to quantitatively compare the bacterial communities on objects and skin to match the object to the individual with a high degree of certainty. Although additional work is needed to further establish the utility of this approach, this series of studies introduces a forensics approach that could eventually be used to independently evaluate results obtained using more traditional forensic practices.

533 citations


Journal ArticleDOI
TL;DR: It is found that many diversity patterns were evident with severely undersampled communities and that methods varied widely in their ability to detect gradients and clusters, including Chi-squared distances and Pearson correlation distances, whereas Gower and Canberra distances performed especially well for detecting clusters.
Abstract: High-throughput sequencing methods enable characterization of microbial communities in a wide range of environments on an unprecedented scale. However, insight into microbial community composition is limited by our ability to detect patterns in this flood of sequences. Here we compare the performance of 51 analysis techniques using real and simulated bacterial 16S rRNA pyrosequencing datasets containing either clustered samples or samples arrayed across environmental gradients. We found that many diversity patterns were evident with severely undersampled communities and that methods varied widely in their ability to detect gradients and clusters. Chi-squared distances and Pearson correlation distances performed especially well for detecting gradients, whereas Gower and Canberra distances performed especially well for detecting clusters. These results also provide a basis for understanding tradeoffs between number of samples and depth of coverage, tradeoffs that are important to consider when designing studies to characterize microbial communities.

260 citations


Journal ArticleDOI
01 Oct 2010-RNA
TL;DR: A critical test of sufficiency is defined: a minimal, apparently sufficient motif for binding the amino acid tryptophan is embedded in a random-sequence background and asked whether it is possible to obtain functional molecules, and an essential unpaired G is revealed.
Abstract: Conservation is often used to define essential sequences within RNA sites. However, conservation finds only invariant sequence elements that are necessary for function, rather than finding a set of sequence elements sufficient for function. Biochemical studies in several systems—including the hammerhead ribozyme and the purine riboswitch—find additional elements, such as loop–loop interactions, required for function yet not phylogenetically conserved. Here we define a critical test of sufficiency: We embed a minimal, apparently sufficient motif for binding the amino acid tryptophan in a random-sequence background and ask whether we obtain functional molecules. After a negative result, we use a combination of three-dimensional structural modeling, selection, designed mutations, high-throughput sequencing, and bioinformatics to explore functional insufficiency. This reveals an essential unpaired G in a diverse structural context, varied sequence, and flexible distance from the invariant internal loop binding site identified previously. Addition of the new element yields a sufficient binding site by the insertion criterion, binding tryptophan in 22 out of 23 tries. Random insertion testing for site sufficiency seems likely to be broadly revealing.

14 citations