scispace - formally typeset
Search or ask a question

Showing papers by "Eugenia Kalnay published in 2006"


Journal ArticleDOI
TL;DR: The North American Regional Reanalysis (NARR) project as mentioned in this paper uses the NCEP Eta model and its Data Assimilation System (at 32-km-45-layer resolution with 3-hourly output) to capture regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.
Abstract: In 1997, during the late stages of production of NCEP–NCAR Global Reanalysis (GR), exploration of a regional reanalysis project was suggested by the GR project's Advisory Committee, “particularly if the RDAS [Regional Data Assimilation System] is significantly better than the global reanalysis at capturing the regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.” Following a 6-yr development and production effort, NCEP's North American Regional Reanalysis (NARR) project was completed in 2004, and data are now available to the scientific community. Along with the use of the NCEP Eta model and its Data Assimilation System (at 32-km–45-layer resolution with 3-hourly output), the hallmarks of the NARR are the incorporation of hourly assimilation of precipitation, which leverages a comprehensive precipitation analysis effort, the use of a recent version of the Noah land surface model, and the use of numerous other datasets that are additional or improv...

3,080 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the performance of AIRS and examine how it is meeting its operational and research objectives based on the experience of more than 2 years with AIRS data.
Abstract: This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.

620 citations


Journal ArticleDOI
01 May 2006-Tellus A
TL;DR: It is found that forecasts can be greatly improved provided that a good model parameterizing the model bias is used to augment the state in the Kalman filter.
Abstract: We modify the local ensemble Kalman filter (LEKF) to incorporate the effect of forecast model bias. The method is based on augmentation of the atmospheric state by estimates of the model bias, and we consider different ways of modeling (i.e. parameterizing) the model bias. We evaluate the effectiveness of the proposed augmented state ensemble Kalman filter through numerical experiments incorporating various model biases into the model of Lorenz and Emanuel. Our results highlight the critical role played by the selection of a good parameterization model for representing the form of the possible bias in the forecast model. In particular, we find that forecasts can be greatly improved provided that a good model parameterizing the model bias is used to augment the state in the Kalman filter.

94 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the observation minus reanalysis difference (OMR) method to estimate the impact of land-use changes by computing the difference between the trends of the surface temperature observations (which reflect all the sources of climate forcing, including surface effects) and the NCEP-NCAR reanalysis surface temperatures (only influenced by the assimilated atmospheric temperature trends).
Abstract: [1] We use the “observation minus reanalysis” difference (OMR) method to estimate the impact of land-use changes by computing the difference between the trends of the surface temperature observations (which reflect all the sources of climate forcing, including surface effects) and the NCEP-NCAR reanalysis surface temperatures (only influenced by the assimilated atmospheric temperature trends). This includes not only urbanization effects but also changes in agricultural practices, such as irrigation and deforestation, as well as other near-surface forcings related to industrialization, such as aerosols. We slightly correct previous results by including the year 1979 within the satellite decades and by excluding stations in the West Coast of the United States. The OMR estimate for surface impact on the mean temperature is similar to that obtained using satellite observations of night light to discriminate between rural and urban stations, with regions of large positive and negative trends, in contrast with the urban corrections based on population density, which are uniformly positive and much smaller. The OMR seasonal cycle results suggest that the impact of the greenhouse gases dominates in the winter, whereas it appears that the impact of surface forcings dominates in the summer. The impact of the USHCN adjustments for nonclimatic trends in the observations does not affect the geographical distribution of the OMR trends. The effect of using a model with constant CO2 in the reanalysis, the use of other reanalyses, and the possible use of the reanalyses to correct for nonclimatic jumps in the observations are also discussed.

86 citations


Journal ArticleDOI
TL;DR: By adding realistic “noise” to observations of the master system, an optimal value of the coupling strength was clearly identifiable and Coupling only the y variable yielded the best results for a wide range of higher coupling strengths.
Abstract: The potential use of chaos synchronization techniques in data assimilation for numerical weather prediction models is explored by coupling a Lorenz three-variable system that represents “truth” to another that represents “the model.” By adding realistic “noise” to observations of the master system, an optimal value of the coupling strength was clearly identifiable. Coupling only the y variable yielded the best results for a wide range of higher coupling strengths. Coupling along dynamically chosen directions identified by either singular or bred vectors could improve upon simpler chaos synchronization schemes. Generalized synchronization (with the parameter r of the slave system different from that of the master) could be easily achieved, as indicated by the synchronization of two identical slave systems coupled to the same master, but the slaves only provided partial information about regime changes in the master. A comparison with a standard data assimilation technique, three-dimensional variat...

82 citations


Journal ArticleDOI
TL;DR: In this paper, an alternative method (called RAN) is examined that combines model output statistics and perfect prog, while at the same time utilizing the information in reanalysis data.
Abstract: Statistical postprocessing methods have been successful in correcting many defects inherent in numerical weather prediction model forecasts. Among them, model output statistics (MOS) and perfect prog have been most common, each with its own strengths and weaknesses. Here, an alternative method (called RAN) is examined that combines the two, while at the same time utilizes the information in reanalysis data. The three methods are examined from a purely formal/mathematical point of view. The results suggest that whereas MOS is expected to outperform perfect prog and RAN in terms of mean squared error, bias, and error variance, the RAN approach is expected to yield more certain and bias-free forecasts. It is suggested therefore that a real-time RAN-based postprocessor be developed for further testing.

49 citations


Journal ArticleDOI
TL;DR: In this paper, a breeding method has been implemented in the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Coupled General Circulation Model (CGCM) with the goal of improving operational seasonal to interannual climate predictions through ensemble forecasting and data assimilation.
Abstract: The breeding method has been implemented in the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Coupled General Circulation Model (CGCM) with the goal of improving operational seasonal to interannual climate predictions through ensemble forecasting and data assimilation. The coupled instability as cap'tured by the breeding method is the first attempt to isolate the evolving ENSO instability and its corresponding global atmospheric response in a fully coupled ocean-atmosphere GCM. Our results show that the growth rate of the coupled bred vectors (BV) peaks at about 3 months before a background ENSO event. The dominant growing BV modes are reminiscent of the background ENSO anomalies and show a strong tropical response with wind/SST/thermocline interrelated in a manner similar to the background ENSO mode. They exhibit larger amplitudes in the eastern tropical Pacific, reflecting the natural dynamical sensitivity associated with the presence of the shallow thermocline. Moreover, the extratropical perturbations associated with these coupled BV modes reveal the variations related to the atmospheric teleconnection patterns associated with background ENSO variability, e.g. over the North Pacific and North America. A similar experiment was carried out with the NCEP/CFS03 CGCM. Comparisons between bred vectors from the NSIPP CGCM and NCEP/CFS03 CGCM demonstrate the robustness of the results. Our results strongly suggest that the breeding method can serve as a natural filter to identify the slowly varying, coupled instabilities in a coupled GCM, which can be used to construct ensemble perturbations for ensemble forecasts and to estimate the coupled background error covariance for coupled data assimilation.

45 citations



01 Dec 2006
TL;DR: In this paper, the Local Ensemble Transform Kalman Filter (LETKF) was used to assimilate simulated model grid point observations and simulated rawinsonde observations into the NASA fvGCM model.
Abstract: Ensemble Kalman Filter (EnKF) methods have been shown to be effective data assimilation schemes: Houtekamer et al. (2005) found the performance of an EnKF scheme to be comparable to that of an operational 3D-Var scheme when assimilating real observations into the CMC GEM grid point model. Using another EnKF scheme, Whitaker et al. (2004) obtained a better mid-troposphere reanalysis from surface pressure observations than with the NCEP 3D-Var. The Local Ensemble Kalman Filter (LEKF), another variant of the EnKF, was introduced in Ott et al. (2002; 2004) and was shown to be accurate and efficient when assimilating simulated observations of model variables on the NCEP GFS model in Szunyogh et al. (2005). In this study, the LEKF is replaced by a more efficient but equivalent implementation (Hunt, 2005), the Local Ensemble Transform Kalman Filter (LETKF). Here, we assimilate simulated model grid point observations and simulated rawinsonde observations into the NASA fvGCM model. The LETKF algorithm is briefly described in Section 2, while its implementation on the fvGCM model is explained in Section 3. Section 4 present data assimilation results for the “perfect model” scenario. In these experiments, the NASA fvGCM is run for two months without assimilating observations to obtain a time series of "true" atmospheric state. Simulated noisy grid-point and rawinsonde observations of this truth are then assimilated with the LETKF. The performance of data assimilation system is evaluated by comparing the analysis state to the truth. Further verification of the scheme is obtained by comparing the performance of the LETKF to that of

3 citations