scispace - formally typeset
Search or ask a question

Showing papers by "Govindasamy Mugesh published in 2019"


Journal ArticleDOI
TL;DR: It is suggested that the multienzyme mimic Mn3O4 nanoparticles possess great potential in suppressing the oxidative stress-mediated pathophysiological conditions under which the antioxidant system is overwhelmed.
Abstract: Biocompatible nanoparticles with an intrinsic ability to mimic the cellular antioxidant enzymes are potential candidates for the development of new therapeutics for various oxidative stress related disorders. However, the understanding of the interaction and the mechanistic crosstalk between the nanoparticles and the cellular biomolecules is limited. Here we show that the multienzyme mimic manganese(ii,iii) oxide, Mn3O4, in nanoform (Mp) rescues the cells from oxidative damage induced by reactive oxygen species (ROS). The nanoparticles provide remarkable protection to biomolecules against the ROS-mediated protein oxidation, lipid peroxidation and DNA damage. Interestingly, the endogenous antioxidant machinery remains unaltered in the presence of these nanozymes, indicating the small molecule targeting of these nanoparticles in the cellular redox modulation. This study delineates the possible mechanism by which the nanoparticles provide protection to the cells against the adverse effects of oxidative stress. Based on our observation, we suggest that the multienzyme mimic Mn3O4 nanoparticles possess great potential in suppressing the oxidative stress-mediated pathophysiological conditions under which the antioxidant system is overwhelmed.

90 citations


Journal ArticleDOI
TL;DR: A remarkably active CeVO4 nanozyme is reported that functionally mimics cytochrome c oxidase (CcO), the terminal enzyme in the respiratory electron transport chain, by catalyzing a four-electron reduction of dioxygen to water.
Abstract: In this study, we report a remarkably active CeVO4 nanozyme that functionally mimics cytochrome c oxidase (CcO), the terminal enzyme in the respiratory electron transport chain, by catalyzing a four-electron reduction of dioxygen to water. The nanozyme catalyzes the reaction by using cytochrome c (Cyt c), the biological electron donor for CcO, at physiologically relevant pH. The CcO activity of the CeVO4 nanozymes depends on the relative ratio of surface Ce3+ /Ce4+ ions, the presence of V5+ and the surface-Cyt c interactions. The complete reduction of oxygen to water takes place without release of any partially reduced oxygen species (PROS) such as superoxide, peroxide and hydroxyl radicals.

58 citations


Journal ArticleDOI
TL;DR: It is reported that the formation of a selenic acid can be monitored in living cells by using a redox-active ebselen analogue with a naphthalimide fluorophore and the probe reacts with H2 O2 to generate the highly fluorescent seleninic acid.
Abstract: Glutathione peroxidase (GPx) is a selenoenzyme that protects cells against oxidative damage. Although the formation of a seleninic acid (-SeO2 H) by this enzyme during oxidative stress has been proposed, a selenic acid has not been identified in cells. Herein, we report that the formation of a seleninic acid can be monitored in living cells by using a redox-active ebselen analogue with a naphthalimide fluorophore. The probe reacts with H2 O2 to generate the highly fluorescent seleninic acid. The electron withdrawing nature of the -SeO2 H moiety and strong Se⋅⋅⋅O interactions, which prevent the photoinduced electron transfer, are responsible for the fluorescence.

33 citations


Journal ArticleDOI
TL;DR: The selenenyl sulfides exhibited a defensive ability against H2 O2 -induced oxidative stress in cultured cells, which suggests the possibility for medicinal applications to control the redox balance in cells.
Abstract: At the redox-active center of thioredoxin reductase (TrxR), a selenenyl sulfide (Se-S) bond is formed between Cys497 and Sec498, which is activated into the thiolselenolate state ([SH,Se- ]) by reacting with a nearby dithiol motif ([SHCys59 ,SHCys64 ]) present in the other subunit. This process is achieved through two reversible steps: an attack of a cysteinyl thiol of Cys59 at the Se atom of the Se-S bond and a subsequent attack of a remaining thiol at the S atom of the generated mixed Se-S intermediate. However, it is not clear how the kinetically unfavorable second step progresses smoothly in the catalytic cycle. A model study that used synthetic selenenyl sulfides, which mimic the active site structure of human TrxR comprising Cys497, Sec498, and His472, suggested that His472 can play a key role by forming a hydrogen bond with the Se atom of the mixed Se-S intermediate to facilitate the second step. In addition, the selenenyl sulfides exhibited a defensive ability against H2 O2 -induced oxidative stress in cultured cells, which suggests the possibility for medicinal applications to control the redox balance in cells.

23 citations


Journal ArticleDOI
TL;DR: It is shown for the first time that a single atom change, hydrogen to halogen, at one of the tyrosine residues can increase the cellular entry of ∼28 kDa green fluorescent protein (GFP) in mammalian cells.
Abstract: Direct delivery of proteins into mammalian cells is a challenging problem in biological and biomedical applications. The most common strategies for the delivery of proteins into the cells include the use of cell-penetrating peptides or supercharged proteins. Herein, we show for the first time that a single atom change, hydrogen to halogen, at one of the tyrosine residues can increase the cellular entry of similar to 28kDa green fluorescent protein (GFP) in mammalian cells. The protein uptake is facilitated by a receptor-mediated endocytosis and the cargo can be released effectively into cytosol by co-treatment with the endosomolytic peptide ppTG21.

19 citations


Journal ArticleDOI
TL;DR: Crystal facet-dependent Cu2O-mediated denitrosylation of S-nitrosothiols and release of nitric oxide (NO) are described.
Abstract: Nitric oxide (NO), a gaseous small molecule generated by the nitric oxide synthase (NOS) enzymes, plays key roles in signal transduction. The thiol groups present in many proteins and small molecules undergo nitrosylation to form the corresponding S-nitrosothiols. The release of NO from S-nitrosothiols is a key strategy to maintain the NO levels in biological systems. However, the controlled release of NO from the nitrosylated compounds at physiological pH remains a challenge. In this paper, we describe the synthesis and NO releasing ability of Cu2O nanomaterials and provide the first experimental evidence that the nanocrystals having different crystal facets within the same crystal system exhibit different activities toward S-nitrosothiols. We used various imaging techniques and time-dependent spectroscopic measurements to understand the nature of catalytically active species involved in the surface reactions. The denitrosylation reactions by Cu2O can be carried out multiple times without affecting the catalytic activity.

18 citations



Journal ArticleDOI
TL;DR: It is demonstrated, for the first time, that the arylselenium species eliminated from the selenocysteine derivatives exhibit significant redox activity by catalysing the reduction of H2 O2 in the presence of GSH (GPx (glutathione peroxidase)-like activity), which suggests that such redox modulatory activity of selenium compounds may have a significant effect on the cellular redox state during the inhibition of seenoproteins.
Abstract: Small molecule-based electrophilic compounds such as 1-chloro-2,4-dinitrobenzene (CDNB) and 1-chloro-4-nitrobenzene (CNB) are currently being used as inhibitors of cysteine- and selenocysteine-containing proteins. CDNB has been used extensively to determine the activity of glutathione S-transferase and to deplete glutathione (GSH) in mammalian cells. Also, CDNB has been shown to irreversibly inhibit thioredoxin reductase (TrxR), a selenoenzyme that catalyses the reduction of thioredoxin (Trx). Mammalian TrxR has a C-terminal active site motif, Gly-Cys-Sec-Gly, and both the cysteine and selenocysteine residues could be the targets of the electrophilic reagents. In this paper we report on the stability of a series of cysteine and selenocysteine derivatives that can be considered as models for the selenoenzyme-inhibitor complexes. We show that these derivatives react with H2 O2 to generate the corresponding selenoxides, which undergo spontaneous elimination to produce dehydroalanine. In contrast, the cysteine derivatives are stable towards such elimination reactions. We also demonstrate, for the first time, that the arylselenium species eliminated from the selenocysteine derivatives exhibit significant redox activity by catalysing the reduction of H2 O2 in the presence of GSH (GPx (glutathione peroxidase)-like activity), which suggests that such redox modulatory activity of selenium compounds may have a significant effect on the cellular redox state during the inhibition of selenoproteins.

13 citations


Journal ArticleDOI
TL;DR: This Concept article does not provide a comprehensive picture of membrane transport but highlights the halogen-substitution as a novel strategy to understand and regulate the cell-membrane traffic.
Abstract: The plasma membrane regulates the transport of molecules into the cell. Small hydrophobic molecules can diffuse directly across the lipid bilayer. However, larger molecules require specific transporters for their entry into the cell. Regulating the cellular entry of small molecules and proteins is a challenging task. The introduction of halogen, particularly iodine, to small molecules and proteins is emerging to be a promising strategy to improve the cellular uptake. Recent studies reveal that a simple substitution of hydrogen atom with iodine not only increases the cellular uptake, but also regulates the membrane transport. The strong halogen-bond-forming ability of iodine atoms plays a crucial role in the transport and the introduction of iodine may provide an efficient strategy for studying membrane activity and cellular functions and improving the delivery of therapeutic agents. This Concept article does not provide a comprehensive picture of membrane transport but highlights halogen-substitution as a novel strategy for understanding and regulating the cell-membrane traffic.

11 citations


Journal ArticleDOI
TL;DR: In this article, a new method for the synthesis of Sec and Sec-containing peptides using dehydroalanine (Dha) as a building block was reported, which is based on the use of a dual function stop codon UGA (opal).
Abstract: Selenocysteine (Sec), the 21st proteinogenic amino acid, is inserted co-translationally into number of natural proteins. It is coded by a dual function stop codon UGA (opal). It is a redox active amino acid found at the active sites of several enzymes that are involved in oxidation–reduction reactions. These enzymes include the three major mammalian selenoproteins glutathione peroxidase (GPx), thioredoxin reductase (TrxR), and iodothyronine deiodinase (Dio). Although Sec is structurally similar to its sulfur analogue cysteine (Cys), the lower pKa of the selenol group in Sec as compared to that of Cys and the interesting redox properties of the selenium atom in peptides and proteins play crucial roles in redox catalysis. However, the chemical synthesis of Sec-containing peptides has been a difficult task. In this paper, we report on a new method for the synthesis of Sec and Sec-containing peptides using dehydroalanine (Dha) as a building block.

11 citations


Journal ArticleDOI
TL;DR: In this article, the role of oxo and peroxido species in the GPx activity of V2O5 and MoO3 nano-enzymes has been discussed.

Journal ArticleDOI
TL;DR: This work reports that the introduction of halogen atoms into a series of fluorescent molecules remarkably enhances their cellular uptake, and that their transport can be increased to more than 95 % by introducing two iodine atoms at appropriate positions.
Abstract: The poor uptake of fluorescent probes and therapeutics by mammalian cells is a major concern in biological applications ranging from fluorescence imaging to drug delivery in living cells. Although gaseous molecules such as oxygen and carbon dioxide, hydrophobic substances such as benzene, and small polar but uncharged molecules such as water and ethanol can cross the cell plasma membrane by simple passive diffusion, many synthetic as well as biological molecules require specific membrane transporters and channel proteins that control the traffic of these molecules into and out of the cell. This work reports that the introduction of halogen atoms into a series of fluorescent molecules remarkably enhances their cellular uptake, and that their transport can be increased to more than 95 % by introducing two iodine atoms at appropriate positions. The nature of the fluorophore does not play a major role in the cellular uptake when iodine atoms are present in the molecules, as compounds bearing naphthalimide, coumarin, BODIPY, and pyrene moieties show similar uptakes. Interestingly, the introduction of a maleimide-based fluorophore bearing two hydroxyethylthio moieties allows the molecules to cross the plasma and nuclear membranes, and the presence of iodine atoms further enhances the transport across both membranes. Overall, this study provides a general strategy for enhancing the uptake of organic molecules by mammalian cells.

Journal ArticleDOI
TL;DR: It is shown that the naphthyl-based organoselenium compounds can mediate the dehalogenation of halogenated pyrimidine-based nucleosides, such as 5-X-2'-deoxyuridine and 5- X-2-deoxycytidine (X=Br or I).
Abstract: Halogenated nucleosides, such as 5-iodo-2'-deoxyuridine and 5-iodo-2'-deoxycytidine, are incorporated into the DNA of replicating cells to facilitate DNA single-strand breaks and intra- or interstrand crosslinks upon UV irradiation. In this work, it is shown that the naphthyl-based organoselenium compounds can mediate the dehalogenation of halogenated pyrimidine-based nucleosides, such as 5-X-2'-deoxyuridine and 5-X-2'-deoxycytidine (X=Br or I). The rate of deiodination was found to be significantly higher than that of the debromination for both nucleosides. Furthermore, the deiodination of iodo-cytidines was found to be faster than that of iodo-uridines. The initial rates of the deiodinations of 5-iodocytosine and 5-iodouracil indicated that the nature of the sugar moiety influences the kinetics of the deiodination. For both the nucleobases and nucleosides, the deiodination and debromination reactions follow a halogen-bond-mediated and addition/elimination pathway, respectively.

Journal ArticleDOI
TL;DR: The reasons for the difference in the degradation pathways used for various substituted organophosphate substrates and the selectivity involved by Zr-incorporated CeO2 nanozyme resembling a lock-and-key fit enzyme model are described.

Posted ContentDOI
21 Nov 2019-bioRxiv
TL;DR: A new species of eutardigrade belonging to the genus Paramacrobiotus is identified, which exhibits fluorescence under UV light and uses a fluorescent shield to protect itself from the germicidal ultra violet radiation.
Abstract: Naturally occurring fluorescence has been observed in multiple species ranging from bacteria to birds. In macroscopic animals such as birds and fishes, fluorescence provides a visual communication signal. However, the functional significance of this phenomenon is not known in most cases. Though photoprotection is attributed to fluorescence under ultraviolet (UV) light in some organisms, it lacks direct experimental evidence. Here, we have identified a new species of eutardigrade belonging to the genus Paramacrobiotus, which exhibits fluorescence under UV light. Using a natural variant of the same species that lacks fluorescence, we show that the fluorescence confers tolerance to lethal UV radiation. Remarkably, we could transfer this property to UV-sensitive Hypsibius exemplaris, another eutardigrade, and also to C. elegans, a nematode. Using high performance liquid chromatography (HPLC) we isolated the fluorescent compound from Paramacrobiotus sp. This compound has excitation maxima (λex) at 370 nm and emission maxima (λem) at 420-430 nm. We propose that Paramacrobiotus sp. uses a fluorescent shield that absorbs harmful UV radiation, and emits harmless blue light, thereby protecting itself from the lethal effects of UV radiation. Summary statement Tardigrades are well known for their tolerance to extreme environmental conditions. In this study, we have identified a new tardigrade species that employs a fluorescent shield to protect itself from the germicidal ultra violet radiation.

Journal ArticleDOI
TL;DR: The article highlights the importance of 28 essential elements in life from both chemical and biological perspective and their role in enzyme functions and several other biological pathways.
Abstract: Here we describe the function of essential elements in biology and discuss about various aspects of these elements in human life as well as in bacteria and plants. The article highlights the importance of 28 essential elements in life from both chemical and biological perspective and their role in enzyme functions and several other biological pathways. Although the journey through periodic table illustrates the specific functions of a few elements, there may be other elements whose functions in living systems are poorly understood. Many drug molecules and metal-complexes have been discovered in the recent past for diagnosis and therapeutic purpose, which also highlight the importance of metal ions and synergistic functions of elements in human and other organisms.