Author
Hideo Ohno
Other affiliations: Hokkaido University, Science Council of Japan, Systems Research Institute ...read more
Bio: Hideo Ohno is an academic researcher from Tohoku University. The author has contributed to research in topics: Magnetization & Ferromagnetism. The author has an hindex of 98, co-authored 858 publications receiving 66685 citations. Previous affiliations of Hideo Ohno include Hokkaido University & Science Council of Japan.
Papers published on a yearly basis
Papers
More filters
TL;DR: Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1)-Mn (x)Te and is used to predict materials with T (C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
Abstract: Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
7,062 citations
TL;DR: The magnetic coupling in all semiconductor ferromagnetic/nonmagnetic layered structures, together with the possibility of spin filtering in RTDs, shows the potential of the present material system for exploring new physics and for developing new functionality toward future electronics.
Abstract: REVIEW Semiconductor devices generally take advantage of the charge of electrons, whereas magnetic materials are used for recording information involving electron spin. To make use of both charge and spin of electrons in semiconductors, a high concentration of magnetic elements can be introduced in nonmagnetic III-V semiconductors currently in use for devices. Low solubility of magnetic elements was overcome by low-temperature nonequilibrium molecular beam epitaxial growth, and ferromagnetic (Ga,Mn)As was realized. Magnetotransport measurements revealed that the magnetic transition temperature can be as high as 110 kelvin. The origin of the ferromagnetic interaction is discussed. Multilayer heterostructures including resonant tunneling diodes (RTDs) have also successfully been fabricated. The magnetic coupling between two ferromagnetic (Ga,Mn)As films separated by a nonmagnetic layer indicated the critical role of the holes in the magnetic coupling. The magnetic coupling in all semiconductor ferromagnetic/nonmagnetic layered structures, together with the possibility of spin filtering in RTDs, shows the potential of the present material system for exploring new physics and for developing new functionality toward future electronics.
4,339 citations
TL;DR: Inter interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ is used by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane an isotropy.
Abstract: Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular anisotropy, a number of material systems have been explored as electrodes, which include rare-earth/transition-metal alloys, L1(0)-ordered (Co, Fe)-Pt alloys and Co/(Pd, Pt) multilayers. However, none of them so far satisfy high thermal stability at reduced dimension, low-current current-induced magnetization switching and high tunnel magnetoresistance ratio all at the same time. Here, we use interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane anisotropy. This approach requires no material other than those used in conventional in-plane-anisotropy MTJs. The perpendicular MTJs consisting of Ta/CoFeB/MgO/CoFeB/Ta show a high tunnel magnetoresistance ratio, over 120%, high thermal stability at dimension as low as 40 nm diameter and a low switching current of 49 microA.
3,169 citations
TL;DR: In this paper, the authors reported the fabrication of all-semiconductor, light-emitting spintronic devices using III-V heterostructures based on gallium arsenide.
Abstract: Conventional electronics is based on the manipulation of electronic charge. An intriguing alternative is the field of ‘spintronics’, wherein the classical manipulation of electronic spin in semiconductor devices gives rise to the possibility of reading and writing non-volatile information through magnetism1,2. Moreover, the ability to preserve coherent spin states in conventional semiconductors3 and quantum dots4 may eventually enable quantum computing in the solid state5,6. Recent studies have shown that optically excited electron spins can retain their coherence over distances exceeding 100 micrometres (ref. 7). But to inject spin-polarized carriers electrically remains a formidable challenge8,9. Here we report the fabrication of all-semiconductor, light-emitting spintronic devices using III–V heterostructures based on gallium arsenide. Electrical spin injection into a non-magnetic semiconductor is achieved (in zero magnetic field) using a p-type ferromagnetic semiconductor10 as the spin polarizer. Spin polarization of the injected holes is determined directly from the polarization of the emitted electroluminescence following the recombination of the holes with the injected (unpolarized) electrons.
2,197 citations
TL;DR: In this article, a new GaAs-based diluted magnetic semiconductor, (Ga,Mn)As, was prepared by molecular beam epitaxy and the lattice constant was determined by x-ray diffraction and shown to increase with the increase of Mn composition, x.
Abstract: A new GaAs‐based diluted magnetic semiconductor, (Ga,Mn)As, was prepared by molecular beam epitaxy. The lattice constant of (Ga,Mn)As films was determined by x‐ray diffraction and shown to increase with the increase of Mn composition, x. Well‐aligned in‐plane ferromagnetic order was observed by magnetization measurements. Magnetotransport measurements revealed the occurrence of anomalous Hall effect in the (Ga,Mn)As layer.
2,072 citations
Cited by
More filters
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...
10,260 citations
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.
9,917 citations
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.
9,158 citations
TL;DR: Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1)-Mn (x)Te and is used to predict materials with T (C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
Abstract: Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
7,062 citations
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.
6,349 citations