scispace - formally typeset
Search or ask a question

Showing papers by "J. Castañeda published in 2020"


Journal ArticleDOI
TL;DR: In this article, the authors reported the observation of a compact binary coalescence involving a 22.2 -24.3 magnitude black hole and a compact object with a mass of 2.50 -2.67 magnitude.
Abstract: We report the observation of a compact binary coalescence involving a 22.2 - 24.3 $M_{\odot}$ black hole and a compact object with a mass of 2.50 - 2.67 $M_{\odot}$ (all measurements quoted at the 90$\%$ credible level). The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on August 14, 2019 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg$^2$ at a distance of $241^{+41}_{-45}$ Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, $0.112^{+0.008}_{-0.009}$, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to $\leq 0.07$. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1-23 Gpc$^{-3}$ yr$^{-1}$ for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models for the formation and mass distribution of compact-object binaries.

1,004 citations


Journal ArticleDOI
R. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1332 moreInstitutions (150)
TL;DR: It is inferred that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M⊙, which can be considered an intermediate mass black hole (IMBH).
Abstract: On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85_{-14}^{+21} M_{⊙} and 66_{-18}^{+17} M_{⊙} (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M_{⊙}. We calculate the mass of the remnant to be 142_{-16}^{+28} M_{⊙}, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3_{-2.6}^{+2.4} Gpc, corresponding to a redshift of 0.82_{-0.34}^{+0.28}. The inferred rate of mergers similar to GW190521 is 0.13_{-0.11}^{+0.30} Gpc^{-3} yr^{-1}.

876 citations


Journal ArticleDOI
Lennart Lindegren1, Sergei A. Klioner2, Jose M Hernandez3, Alex Bombrun3, M. Ramos-Lerate3, H. Steidelmüller2, Ulrich Bastian4, M. Biermann4, A. de Torres3, E. Gerlach2, R. Geyer2, Thomas Hilger2, David Hobbs1, U. Lammers3, Paul J. McMillan1, C.A. Stephenson3, J. Castañeda5, Michael Davidson6, C. Fabricius5, G. Gracia-Abril4, Jordi Portell5, Nicholas Rowell6, David Teyssier3, F. Torra5, S. Bartolomé5, M. Clotet5, N. Garralda5, J.J. González-Vidal5, J. Torra5, U. Abbas7, Martin Altmann8, Martin Altmann4, E. Anglada Varela3, L. Balaguer-Núñez5, Zoltan Balog4, Zoltan Balog9, C. Barache8, Ugo Becciani7, M. Bernet5, Stefano Bertone10, Stefano Bertone7, Stefano Bertone11, Luciana Bianchi, S. Bouquillon8, Anthony G. A. Brown12, Beatrice Bucciarelli7, D. Busonero7, A. G. Butkevich7, R. Buzzi7, Rossella Cancelliere13, T. Carlucci8, Patrick Charlot14, Maria-Rosa L. Cioni15, Mariateresa Crosta7, C. Crowley3, E. F. del Peloso4, E. del Pozo3, Ronald Drimmel7, P. Esquej3, Agnes Fienga14, Agnes Fienga8, E. Fraile3, Mario Gai7, M. Garcia-Reinaldos3, Raphael Guerra3, Nigel Hambly6, M. Hauser9, K. Janßen15, Stefan Jordan4, Z. Kostrzewa-Rutkowska16, Z. Kostrzewa-Rutkowska12, Massimiliano Lattanzi7, Massimiliano Lattanzi13, S. Liao7, E. Licata7, Tim Lister17, W. Löffler4, Jon Marchant18, A. Masip5, Francois Mignard14, Alexey Mints15, D. Molina5, Alcione Mora3, Roberto Morbidelli7, C. P. Murphy3, C. Pagani19, Pasquale Panuzzo8, X. Peñalosa Esteller5, E. Poggio7, P. Re Fiorentin7, Alberto Riva7, A. Sagristà Sellés4, V. Sanchez Gimenez5, M. Sarasso7, Eva Sciacca7, H. I. Siddiqui20, Richard L. Smart7, D. Souami8, D. Souami21, Alessandro Spagna7, Iain A. Steele18, F. Taris8, E. Utrilla3, W. van Reeven3, Alberto Vecchiato7 
TL;DR: Gaia Early Data Release 3 (Gaia EDR3) as discussed by the authors contains results for 1.812 billion sources in the magnitude range G = 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase.
Abstract: Gaia Early Data Release 3 (Gaia EDR3) contains results for 1.812 billion sources in the magnitude range G = 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase. We describe the input data, the models, and the processing used for the astrometric content of Gaia EDR3, as well as the validation of these results performed within the astrometry task. The processing broadly followed the same procedures as for Gaia DR2, but with significant improvements to the modelling of observations. For the first time in the Gaia data processing, colour-dependent calibrations of the line- and point-spread functions have been used for sources with well-determined colours from DR2. In the astrometric processing these sources obtained five-parameter solutions, whereas other sources were processed using a special calibration that allowed a pseudocolour to be estimated as the sixth astrometric parameter. Compared with DR2, the astrometric calibration models have been extended, and the spin-related distortion model includes a self-consistent determination of basic-angle variations, improving the global parallax zero point. Gaia EDR3 gives full astrometric data (positions at epoch J2016.0, parallaxes, and proper motions) for 1.468 billion sources (585 million with five-parameter solutions, 882 million with six parameters), and mean positions at J2016.0 for an additional 344 million. Solutions with five parameters are generally more accurate than six-parameter solutions, and are available for 93% of the sources brighter than G = 17 mag. The median uncertainty in parallax and annual proper motion is 0.02-0.03 mas at magnitude G = 9 to 14, and around 0.5 mas at G = 20. Extensive characterisation of the statistical properties of the solutions is provided, including the estimated angular power spectrum of parallax bias from the quasars.

428 citations


Journal ArticleDOI
TL;DR: The GW190521 signal as mentioned in this paper is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, and shows mild evidence for spin-induced orbital precession.
Abstract: The gravitational-wave signal GW190521 is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, $85^{+21}_{-14}\,M_{\odot}$ and $66^{+17}_{-18}\,M_{\odot}$, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range $65 - 120\,M_{\odot}$. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger $(142^{+28}_{-16}\,M_{\odot})$ classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular binary black hole coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be $0.13^{+0.30}_{-0.11}\,{\rm Gpc}^{-3}\,\rm{yr}^{-1}$. We discuss the astrophysical implications of GW190521 for stellar collapse, and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescence, or via hierarchical merger of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.

358 citations


Journal ArticleDOI
TL;DR: In this paper, a clean and well-characterised catalogue of objects within 100 εpc of the Sun from the G\ Early Data Release 3 is presented, which is the first analysis of the science that is possible with this sample to demonstrate its potential and best practices.
Abstract: We produce a clean and well-characterised catalogue of objects within 100\,pc of the Sun from the \G\ Early Data Release 3. We characterise the catalogue through comparisons to the full data release, external catalogues, and simulations. We carry out a first analysis of the science that is possible with this sample to demonstrate its potential and best practices for its use. The selection of objects within 100\,pc from the full catalogue used selected training sets, machine-learning procedures, astrometric quantities, and solution quality indicators to determine a probability that the astrometric solution is reliable. The training set construction exploited the astrometric data, quality flags, and external photometry. For all candidates we calculated distance posterior probability densities using Bayesian procedures and mock catalogues to define priors. Any object with reliable astrometry and a non-zero probability of being within 100\,pc is included in the catalogue. We have produced a catalogue of \NFINAL\ objects that we estimate contains at least 92\% of stars of stellar type M9 within 100\,pc of the Sun. We estimate that 9\% of the stars in this catalogue probably lie outside 100\,pc, but when the distance probability function is used, a correct treatment of this contamination is possible. We produced luminosity functions with a high signal-to-noise ratio for the main-sequence stars, giants, and white dwarfs. We examined in detail the Hyades cluster, the white dwarf population, and wide-binary systems and produced candidate lists for all three samples. We detected local manifestations of several streams, superclusters, and halo objects, in which we identified 12 members of \G\ Enceladus. We present the first direct parallaxes of five objects in multiple systems within 10\,pc of the Sun.

126 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compare Gaia DR2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release.
Abstract: We compare the Gaia DR2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3 astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar, and the disc, providing new insights into features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some well-known features and indications of new ones.

62 citations


Journal ArticleDOI
Amina Helmi, F.E. van Leeuwen1, Paul J. McMillan, Davide Massari2  +477 moreInstitutions (95)
TL;DR: An error occurred during the production process of the original published version as mentioned in this paper and the following names were omitted from the author list: R. Haigron, D. Hatzidimitriou, M. Hauser, E. Haywood, U. Heiter, J. Heu, T. Hilger.
Abstract: An error occurred during the production process of the original published version. The following names were omitted from the author list: R. Haigron, D. Hatzidimitriou, M. Hauser, M. Haywood, U. Heiter, J. Heu, T. Hilger. The original published version has been corrected together with the publication of this corrigendum.

26 citations


Journal ArticleDOI
TL;DR: The Gaia Early Data Release 3 (Gaia EDR3) contains results derived from 78 billion individual field-of-view transits of 2.5 billion sources collected by the European Space Agency's Gaia mission during its first 34 months of continuous scanning of the sky, and improvements over the earlier Gaia data releases are described.
Abstract: The Gaia Early Data Release 3 (Gaia EDR3) contains results derived from 78 billion individual field-of-view transits of 2.5 billion sources collected by the European Space Agency's Gaia mission during its first 34 months of continuous scanning of the sky. We describe the input data, which have the form of onboard detections, and the modeling and processing that is involved in cross-matching these detections to sources. For the cross-match, we formed clusters of detections that were all linked to the same physical light source on the sky. As a first step, onboard detections that were deemed spurious were discarded. The remaining detections were then preliminarily associated with one or more sources in the existing source list in an observation-to-source match. All candidate matches that directly or indirectly were associated with the same source form a match candidate group. The detections from the same group were then subject to a cluster analysis. Each cluster was assigned a source identifier that normally was the same as the identifiers from Gaia DR2. Because the number of individual detections is very high, we also describe the efficient organising of the processing. We present results and statistics for the final cross-match with particular emphasis on the more complicated cases that are relevant for the users of the Gaia catalogue. We describe the improvements over the earlier Gaia data releases, in particular for stars of high proper motion, for the brightest sources, for variable sources, and for close source pairs.

19 citations


Journal ArticleDOI
TL;DR: The PSF modelling and calibration carried out for Gaia EDR3 represents a major step forwards in the data processing and will lead to reduced systematic errors in the core mission data products.
Abstract: Context: The unprecedented astrometric precision of the Gaia mission relies on accurate estimates of the locations of sources in the Gaia data stream. This is ultimately performed by point spread function (PSF) fitting, which in turn requires an accurate reconstruction of the PSF. Gaia Early Data Release 3 (EDR3) will, for the first time, use a PSF calibration that models several of the strongest dependences, leading to signficantly reduced systematic errors. Aims: We describe the PSF model and calibration pipeline implemented for Gaia EDR3, including an analysis of the calibration results over the 34 months of data. We include a discussion of the limitations of the current pipeline and directions for future releases. This will be of use both to users of Gaia data and as a reference for other precision astrometry missions. Methods: We develop models of the 1D line spread function (LSF) and 2D PSF profiles based on a linear combination of basis components. We fit the models to selected primary sources in independent time ranges, using simple parameterisations for the colour and other dependences. Variation in time is smoothed by merging the independent calibrations in a square root information filter, with resets at certain mission events that induce a discontinuous change in the PSF. Results: The PSF calibration shows strong time and colour dependences that accurately reproduce the varying state of the Gaia astrometric instrument. Analysis of the residuals reveals both the performance and the limitations of the current models and calibration pipeline, and indicates the directions for future development. Conclusions: The PSF modelling and calibration carried out for Gaia EDR3 represents a major step forwards in the data processing and will lead to reduced systematic errors in the core mission data products. Further significant improvements are expected in the future data releases.

17 citations


Journal ArticleDOI
TL;DR: In this paper, the authors correct errors in Appendix B of the Gaia Collaboration (2018) which describes the modelling of the Large and Small Magellanic Clouds (LMC and SMC) and show the rotation curve and median radial motion in the LMC.
Abstract: This is a corrigendum to Gaia Collaboration (2018). It corrects errors in Appendix B, which describes the modelling of the Large and Small Magellanic Clouds (LMC and SMC). One of these errors also affects Fig. 18 of the paper, which shows the rotation curve and median radial motion in the LMC. No other results in the paper are affected. There should be no vector products in Appendix B, and everywhere a vector product appears should be a scalar product. This affects Eqs. (B.5), (B.8), (B.10), (B.12), (B.13), and (B.20). Equation (B.10), which defines one component of position within the plane of the galaxy, contains an additional typographical error, and it should have read (Farmula Presented) Equation (B.21) is incorrect. The factor of (ax + by + z) is applied to the wrong part of the equation. It should have read (Farmula Presented) This error affects the derived deprojected motions of stars in the LMC, and means that changes in the observational signature of the bulk motion away from the centre are not properly accounted for. The effect becomes more significant further from the centre. Figure 1 shows the resulting median tangential velocity, vT (the rotation curve), and median radial velocity vR as a function of de-projected radius R for the LMC, which is otherwise produced in the same way as before. The major differences between this and the equivalent figure in Gaia Collaboration (2018) are as follows The rotation curve reaches a greater velocity (~85 km s-1 versus ~75 km s-1) and remains flat beyond 6 kpc, as opposed to starting to fall. The difference in asymmetric drift for the blue and red populations is clearer the blue population, which is typically younger than the redder population, is rotating faster. The apparent outward motion of the stellar populations is much smaller. The blue population has almost no net radial motion, while the red population has one of .8 km s-1 (as opposed to ~20 km s-1). The difference in radial motion between the y 0 populations is dramatically reduced, as is the difference between the value derived assuming the known line-of-sight bulk motion and the one derived leaving this value free.

8 citations