scispace - formally typeset
Search or ask a question

Showing papers by "Jie Zheng published in 2016"


Journal ArticleDOI
TL;DR: It is suggested that methylation may have a causal role consistent with an infinitesimal model in which many methylation sites each have a small influence, amounting to a large overall contribution.
Abstract: The influence of genetic variation on complex diseases is potentially mediated through a range of highly dynamic epigenetic processes exhibiting temporal variation during development and later life. Here we present a catalogue of the genetic influences on DNA methylation (methylation quantitative trait loci (mQTL)) at five different life stages in human blood: children at birth, childhood, adolescence and their mothers during pregnancy and middle age. We show that genetic effects on methylation are highly stable across the life course and that developmental change in the genetic contribution to variation in methylation occurs primarily through increases in environmental or stochastic effects. Though we map a large proportion of the cis-acting genetic variation, a much larger component of genetic effects influencing methylation are acting in trans. However, only 7 % of discovered mQTL are trans-effects, suggesting that the trans component is highly polygenic. Finally, we estimate the contribution of mQTL to variation in complex traits and infer that methylation may have a causal role consistent with an infinitesimal model in which many methylation sites each have a small influence, amounting to a large overall contribution. DNA methylation contains a significant heritable component that remains consistent across the lifespan. Our results suggest that the genetic component of methylation may have a causal role in complex traits. The database of mQTL presented here provide a rich resource for those interested in investigating the role of methylation in disease.

469 citations


Posted ContentDOI
03 May 2016-bioRxiv
TL;DR: This manuscript describes LD Hub – a centralized database of summary-level GWAS results for 177 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline, and presents new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis.
Abstract: Motivation: LD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously. Results: In this manuscript, we describe LD Hub - a centralized database of summary-level GWAS results for 177 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies. Availability and implementation: The web interface and instructions for using LD Hub are available at http://ldsc.broadinstitute.org/

88 citations


Journal ArticleDOI
TL;DR: These data show that specific, mainly hepatocyte-centred, components of lipid metabolism are important to GBD risk in women, and delineate the risk effects among many genotypes known to influence lipids.
Abstract: Gallbladder disease (GBD) has an overall prevalence of 10–40% depending on factors such as age, gender, population, obesity and diabetes, and represents a major economic burden. Although gallstones are composed of cholesterol by-products and are associated with obesity, presumed causal pathways remain unproven, although BMI reduction is typically recommended. We performed genetic studies to discover candidate genes and define pathways involved in GBD. We genotyped 15 241 women of European ancestry from three cohorts, including 3216 with GBD, using the Human cardiovascular disease (HumanCVD) BeadChip containing up to ~53 000 single-nucleotide polymorphisms (SNPs). Effect sizes with P-values for development of GBD were generated. We identify two new loci associated with GBD, GCKR rs1260326:T>C (P=5.88 × 10−7, s=−0.146) and TTC39B rs686030:C>A (P=6.95x10−7, s=0.271) and detect four independent SNP effects in ABCG8 rs4953023:G>A (P=7.41 × 10−47, s=0.734), ABCG8 rs4299376:G>T (P=2.40 × 10−18, s=0.278), ABCG5 rs6544718:T>C (P=2.08 × 10−14, s=0.044) and ABCG5 rs6720173:G>C (P=3.81 × 10−12, s=0.262) in conditional analyses taking genotypes of rs4953023:G>A as a covariate. We also delineate the risk effects among many genotypes known to influence lipids. These data, from the largest GBD genetic study to date, show that specific, mainly hepatocyte-centred, components of lipid metabolism are important to GBD risk in women. We discuss the potential pharmaceutical implications of our findings.

25 citations


Journal ArticleDOI
TL;DR: The potential of this novel approach to mQTL analysis by analysing the combined effect of multiple low frequency or rare variants to identify regions of low frequency and rare variants associated with DNA methylation levels is demonstrated.
Abstract: Background Single variant approaches have been successful in identifying DNA methylation quantitative trait loci (mQTL), although as with complex traits they lack the statistical power to identify the effects from rare genetic variants. We have undertaken extensive analyses to identify regions of low frequency and rare variants that are associated with DNA methylation levels. Methods We used repeated measurements of DNA methylation from five different life stages in human blood, taken from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Variants were collapsed across CpG islands and their flanking regions to identify variants collectively associated with methylation, where no single variant was individually responsible for the observed signal. All analyses were undertaken using the sequence kernel association test. Results For loci where no individual variant mQTL was observed based on a single variant analysis, we identified 95 unique regions where the combined effect of low frequency variants (MAF ≤ 5%) provided strong evidence of association with methylation. For loci where there was previous evidence of an individual variant mQTL, a further 3 regions provided evidence of association between multiple low frequency variants and methylation levels. Effects were observed consistently across 5 different time points in the lifecourse and evidence of replication in the TwinsUK and Exeter cohorts was also identified. Conclusion We have demonstrated the potential of this novel approach to mQTL analysis by analysing the combined effect of multiple low frequency or rare variants. Future studies should benefit from applying this approach as a complementary follow up to single variant analyses.

10 citations