scispace - formally typeset
Search or ask a question

Showing papers by "Jonathan A. Fletcher published in 2018"


Journal ArticleDOI
TL;DR: A comprehensive integrated genomic study of 74 MPMs provided a deeper understanding of histology-independent determinants of aggressive behavior, defined a novel genomic subtype with TP53 and SETDB1 mutations and extensive loss of heterozygosity, and discovered strong expression of the immune-checkpoint gene VISTA in epithelioid MPM.
Abstract: Malignant pleural mesothelioma (MPM) is a highly lethal cancer of the lining of the chest cavity. To expand our understanding of MPM, we conducted a comprehensive integrated genomic study, including the most detailed analysis of BAP1 alterations to date. We identified histology-independent molecular prognostic subsets, and defined a novel genomic subtype with TP53 and SETDB1 mutations and extensive loss of heterozygosity. We also report strong expression of the immune checkpoint gene VISTA in epithelioid MPM, strikingly higher than in other solid cancers, with implications for the immune response to MPM and for its immunotherapy. Our findings highlight new avenues for further investigation of MPM biology and novel therapeutic options.

388 citations


Journal ArticleDOI
TL;DR: The objective of the current study was to validate H3G34W and H3K36M IHC in the diagnosis of giant cell‐rich bone tumors on fine‐needle aspiration and core needle biopsy specimens.
Abstract: Background Diagnosing giant cell-rich bone tumors can be challenging on limited biopsies. H3 histone family member 3A (H3F3A) (G34W/V/R/L) mutations are present in the majority of giant cell tumors (GCTs) of bone and H3 histone family member 3B (H3F3B) (K36M) mutations are present in nearly all chondroblastomas, but are absent in histologic mimics. Mutation-specific immunohistochemistry (IHC) is highly specific for GCT and chondroblastoma in surgical excisions. The objective of the current study was to validate H3G34W and H3K36M IHC in the diagnosis of giant cell-rich bone tumors on fine-needle aspiration and core needle biopsy specimens. Methods IHC was performed using monoclonal antibodies against histone H3.3 G34W and K36M in GCTs of bone (26 cases, including 2 malignant cases), GCT of Paget disease (1 case), chondroblastoma (8 cases), aneurysmal bone cyst (7 cases), and osteosarcoma (13 cases) with available fine-needle aspiration and/or core needle biopsy specimens from 2 institutions. H3F3A and H3F3B Sanger sequencing was performed on all 4 H3G34W IHC-negative GCTs. Results IHC for H3G34W was positive in 22 of 26 GCTs (85%) and negative in all histologic mimics. IHC for H3K36M was positive in all 8 chondroblastomas and negative in all histologic mimics. IHC results were concordant between biopsy and surgical specimens in 152 of 158 samples (96%). Sequencing identified alternate H3F3A G34L and G34V mutations in 1 IHC-negative GCT each, but no mutation was found in the remaining 2 cases. Conclusions H3G34W and H3K36M IHC is highly specific for GCT and chondroblastoma, respectively, among giant cell-rich bone tumors, and is useful for confirming the diagnosis in limited biopsies. The presence of alternate H3F3A mutations accounts for the H3G34W IHC negativity in a subset of GCT of bone cases. Cancer Cytopathol 2018. © 2018 American Cancer Society.

44 citations


Journal ArticleDOI
TL;DR: The enhancer landscape of gastrointestinal stromal tumor (GIST) is described, identifying established and unique GIST-associated genes that characterize this neoplasm and highlighting genes that reinforce and extend the understanding of these neoplasms.
Abstract: Activating mutations in the KIT or PDGFRA receptor tyrosine kinases are hallmarks of gastrointestinal stromal tumor (GIST). The biological underpinnings of recurrence following resection or disease progression beyond kinase mutation are poorly understood. Utilizing chromatin immunoprecipitation with sequencing of tumor samples and cell lines, we describe the enhancer landscape of GIST, highlighting genes that reinforce and extend our understanding of these neoplasms. A group of core transcription factors can be distinguished from others unique to localized and metastatic disease. The transcription factor HAND1 emerges in metastatic disease, binds to established GIST-associated enhancers, and facilitates GIST cell proliferation and KIT gene expression. The pattern of transcription factor expression in primary tumors is predictive of metastasis-free survival in GIST patients. These results provide insight into the enhancer landscape and transcription factor network underlying GIST, and define a unique strategy for predicting clinical behavior of this disease.

21 citations


Journal ArticleDOI
TL;DR: BPR1J373 inhibited proliferation and induced apoptosis by targeting KIT in GIST cells with KIT gene mutations and could be a potential anticancer drug for GIST and deserves further investigation for clinical applications.
Abstract: Gastrointestinal stromal tumor (GIST) is a type of KIT-driven cancer. KIT gene mutations are found in approximately 80% of GISTs, and most of these mutations occur in exon 9 and exon 11. Imatinib has been successfully used as a first-line treatment for advanced GIST, with a significant improvement in progression-free survival (PFS) and overall survival. However, disease progression might develop due to primary or secondary resistance to imatinib. Sunitinib and regorafenib have been approved as second- and third-line treatments for advanced GIST patients, with median PFS values of 6.8 and 4.8 months, respectively. However, these relatively modest improvements in PFS underscore the need for more effective KIT inhibitors. BPR1J373 is a multitargeted kinase inhibitor that has been shown to inhibit the proliferation of KIT-driven acute myeloid leukemia cells in vitro and in vivo. In this study, we found that BPR1J373 inhibited proliferation and induced apoptosis by targeting KIT in GIST cells with KIT gene mutations. BPR1J373 also induced cell cycle arrest and senescent change in KIT-mutant GIST48 cells, probably by targeting aurora kinase A. In the KIT-null COS-1 cell-based system, BPR1J373 effectively inhibited KIT with single or double mutations of KIT developed in GIST. The antiproliferative effect was also consistently evident in GIST430 tumor-grafted mice. The results suggest that BPR1J373 could be a potential anticancer drug for GIST and deserves further investigation for clinical applications.

4 citations


Journal ArticleDOI
TL;DR: This data indicates polyclonal emergence of KIT secondary mutations (muts) is the main mechanism of imatinib progression in GIST and approved KIT inhibitors SU and RE each suppress only a fraction of these mutations.
Abstract: 11510Background: Polyclonal emergence of KIT secondary mutations (muts) is the main mechanism of imatinib (IM) progression in GIST. Although approved KIT inhibitors SU and RE each suppress only a s...

1 citations