scispace - formally typeset
Search or ask a question

Showing papers in "Cancer Discovery in 2018"


Journal ArticleDOI
TL;DR: The current state of understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, is reviewed, and conceptual gaps in knowledge are highlighted.
Abstract: Immune checkpoint blockade is able to induce durable responses across multiple types of cancer, which has enabled the oncology community to begin to envision potentially curative therapeutic approaches. However, the remarkable responses to immunotherapies are currently limited to a minority of patients and indications, highlighting the need for more effective and novel approaches. Indeed, an extraordinary amount of preclinical and clinical investigation is exploring the therapeutic potential of negative and positive costimulatory molecules. Insights into the underlying biological mechanisms and functions of these molecules have, however, lagged significantly behind. Such understanding will be essential for the rational design of next-generation immunotherapies. Here, we review the current state of our understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, and highlight conceptual gaps in knowledge. Significance: This review provides an overview of immune checkpoint blockade therapy from a basic biology and immunologic perspective for the cancer research community. Cancer Discov; 8(9); 1069–86. ©2018 AACR.

1,893 citations


Journal ArticleDOI
TL;DR: Genomic profiling may enhance the predictive utility of PD-L1 expression and tumor mutation burden and facilitate establishment of personalized combination immunotherapy approaches for genomically defined LUAC subsets.
Abstract: KRAS is the most common oncogenic driver in lung adenocarcinoma (LUAC). We previously reported that STK11/LKB1 (KL) or TP53 (KP) comutations define distinct subgroups of KRAS-mutant LUAC. Here, we examine the efficacy of PD-1 inhibitors in these subgroups. Objective response rates to PD-1 blockade differed significantly among KL (7.4%), KP (35.7%), and K-only (28.6%) subgroups (P < 0.001) in the Stand Up To Cancer (SU2C) cohort (174 patients) with KRAS-mutant LUAC and in patients treated with nivolumab in the CheckMate-057 phase III trial (0% vs. 57.1% vs. 18.2%; P = 0.047). In the SU2C cohort, KL LUAC exhibited shorter progression-free (P < 0.001) and overall (P = 0.0015) survival compared with KRASMUT;STK11/LKB1WT LUAC. Among 924 LUACs, STK11/LKB1 alterations were the only marker significantly associated with PD-L1 negativity in TMBIntermediate/High LUAC. The impact of STK11/LKB1 alterations on clinical outcomes with PD-1/PD-L1 inhibitors extended to PD-L1-positive non-small cell lung cancer. In Kras-mutant murine LUAC models, Stk11/Lkb1 loss promoted PD-1/PD-L1 inhibitor resistance, suggesting a causal role. Our results identify STK11/LKB1 alterations as a major driver of primary resistance to PD-1 blockade in KRAS-mutant LUAC.Significance: This work identifies STK11/LKB1 alterations as the most prevalent genomic driver of primary resistance to PD-1 axis inhibitors in KRAS-mutant lung adenocarcinoma. Genomic profiling may enhance the predictive utility of PD-L1 expression and tumor mutation burden and facilitate establishment of personalized combination immunotherapy approaches for genomically defined LUAC subsets. Cancer Discov; 8(7); 822-35. ©2018 AACR.See related commentary by Etxeberria et al., p. 794This article is highlighted in the In This Issue feature, p. 781.

978 citations


Journal ArticleDOI
TL;DR: It is found that a distinct and abundant microbiome drives suppressive monocytic cellular differentiation in pancreatic cancer via selective Toll-like receptor ligation leading to T-cell anergy, and that the microbiome has potential as a therapeutic target in the modulation of disease progression.
Abstract: We found that the cancerous pancreas harbors a markedly more abundant microbiome compared with normal pancreas in both mice and humans, and select bacteria are differentially increased in the tumorous pancreas compared with gut. Ablation of the microbiome protects against preinvasive and invasive pancreatic ductal adenocarcinoma (PDA), whereas transfer of bacteria from PDA-bearing hosts, but not controls, reverses tumor protection. Bacterial ablation was associated with immunogenic reprogramming of the PDA tumor microenvironment, including a reduction in myeloid-derived suppressor cells and an increase in M1 macrophage differentiation, promoting TH1 differentiation of CD4+ T cells and CD8+ T-cell activation. Bacterial ablation also enabled efficacy for checkpoint-targeted immunotherapy by upregulating PD-1 expression. Mechanistically, the PDA microbiome generated a tolerogenic immune program by differentially activating select Toll-like receptors in monocytic cells. These data suggest that endogenous microbiota promote the crippling immune-suppression characteristic of PDA and that the microbiome has potential as a therapeutic target in the modulation of disease progression.Significance: We found that a distinct and abundant microbiome drives suppressive monocytic cellular differentiation in pancreatic cancer via selective Toll-like receptor ligation leading to T-cell anergy. Targeting the microbiome protects against oncogenesis, reverses intratumoral immune tolerance, and enables efficacy for checkpoint-based immunotherapy. These data have implications for understanding immune suppression in pancreatic cancer and its reversal in the clinic. Cancer Discov; 8(4); 403-16. ©2018 AACR.See related commentary by Riquelme et al., p. 386This article is highlighted in the In This Issue feature, p. 371.

715 citations


Journal ArticleDOI
TL;DR: A pancreatic cancer patient-derived organoid (PDO) library is generated that recapitulates the mutational spectrum and transcriptional subtypes of primary Pancreatic cancer and proposes that combined molecular and therapeutic profiling of PDOs may predict clinical response and enable prospective therapeutic selection.
Abstract: Pancreatic cancer is the most lethal common solid malignancy. Systemic therapies are often ineffective and predictive biomarkers to guide treatment are urgently needed. We generated a pancreatic cancer patient-derived organoid (PDO) library that recapitulates the mutational spectrum and transcriptional subtypes of primary pancreatic cancer. New driver oncogenes were nominated and transcriptomic analyses revealed unique clusters. PDOs exhibited heterogeneous responses to standard-of-care chemotherapeutics and investigational agents. In a case study manner, we find that PDO therapeutic profiles paralleled patient outcomes and that PDOs enable longitudinal assessment of chemo-sensitivity and evaluation of synchronous metastases. We derived organoid-based gene expression signatures of chemo-sensitivity that predicted improved responses for many patients to chemotherapy in both the adjuvant and advanced disease settings. Finally, we nominated alternative treatment strategies for chemo-refractory PDOs using targeted agent therapeutic profiling. We propose that combined molecular and therapeutic profiling of PDOs may predict clinical response and enable prospective therapeutic selection.

608 citations


Journal ArticleDOI
TL;DR: Antigen escape and downregulation have emerged as major issues impacting the durability of CAR T-cell therapy and ways to overcome these obstacles in order to improve clinical outcomes are explored.
Abstract: Emerging data from chimeric antigen receptor (CAR) T-cell trials in B-cell malignancies demonstrate that a common mechanism of resistance to this novel class of therapeutics is the emergence of tumors with loss or downregulation of the target antigen. Antigen loss or antigen-low escape is likely to emerge as an even greater barrier to success in solid tumors, which manifest greater heterogeneity in target antigen expression. Potential approaches to overcome this challenge include engineering CAR T cells to achieve multispecificity and to respond to lower levels of target antigen and more efficient induction of natural antitumor immune responses as a result of CAR-induced inflammation. In this article, we review the evidence to date for antigen escape and downregulation and discuss approaches currently under study to overcome these obstacles.Significance: Antigen escape and downregulation have emerged as major issues impacting the durability of CAR T-cell therapy. Here, we explore their incidence and ways to overcome these obstacles in order to improve clinical outcomes. Cancer Discov; 8(10); 1219-26. ©2018 AACR.

570 citations


Journal ArticleDOI
TL;DR: The findings implicate cellular components other than T cells and suggest novel links between systemic inflammation and characteristic neurotoxicity symptoms and identify neurotoxicity risk factors.
Abstract: CD19-specific chimeric antigen receptor (CAR) T-cell therapy is highly effective against relapsed or refractory acute lymphoblastic leukemia (ALL), but is hindered by neurotoxicity. In 53 adult patients with ALL, we found a significant association of severe neurotoxicity with high pretreatment disease burden, higher peak CAR T-cell expansion, and early and higher elevations of proinflammatory cytokines in blood. Patients with severe neurotoxicity had evidence of blood-cerebrospinal fluid (CSF) barrier disruption correlating with neurotoxicity grade without association with CSF white blood cell count or CAR T-cell quantity in CSF. Proinflammatory cytokines were enriched in CSF during severe neurotoxicity with disproportionately high levels of IL6, IL8, MCP1, and IP10, suggesting central nervous system-specific production. Seizures, seizure-like activity, myoclonus, and neuroimaging characteristics suggested excitatory neurotoxicity, and we found elevated levels of endogenous excitatory agonists in CSF during neurotoxicity.Significance: We detail the neurologic symptoms and blood, CSF, and neuroimaging correlates of neurotoxicity associated with CD19 CAR T cells and identify neurotoxicity risk factors. Our findings implicate cellular components other than T cells and suggest novel links between systemic inflammation and characteristic neurotoxicity symptoms. Cancer Discov; 8(8); 958-71. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 899.

534 citations


Journal ArticleDOI
TL;DR: This trial demonstrates that combined BRAF + EGFR + MEK inhibition is tolerable, with promising activity in patients with BRAFV600E colorectal cancer, and highlights the MAPK pathway as a critical target in BRAFv600Ecolorectals and the need to optimize strategies inhibiting this pathway to overcome both primary and acquired resistance.
Abstract: Although BRAF inhibitor monotherapy yields response rates >50% in BRAFV600-mutant melanoma, only ~5% with BRAFV600E colorectal cancer (CRC) respond. Preclinical studies suggest that lack of efficacy in BRAFV600E CRC is due to adaptive feedback reactivation of MAPK signaling, often mediated by EGFR. This clinical trial evaluated BRAF and EGFR inhibition with dabrafenib (D) + panitumumab (P) ± MEK inhibition with trametinib (T) to achieve greater MAPK suppression and improved efficacy in 142 patients with BRAFV600E CRC. Confirmed response rates for D+P, D+T+P, and T+P were 10%, 21%, and 0%, respectively. Pharmacodynamic analysis of paired pre- and on-treatment biopsies found that efficacy of D+T+P correlated with increased MAPK suppression. Serial cell-free DNA analysis revealed additional correlates of response and emergence of KRAS and NRAS mutations on disease progression. Thus, targeting adaptive feedback pathways in BRAFV600E CRC can improve efficacy, but MAPK reactivation remains an important primary and acquired resistance mechanism.

396 citations


Journal ArticleDOI
TL;DR: A comprehensive integrated genomic study of 74 MPMs provided a deeper understanding of histology-independent determinants of aggressive behavior, defined a novel genomic subtype with TP53 and SETDB1 mutations and extensive loss of heterozygosity, and discovered strong expression of the immune-checkpoint gene VISTA in epithelioid MPM.
Abstract: Malignant pleural mesothelioma (MPM) is a highly lethal cancer of the lining of the chest cavity. To expand our understanding of MPM, we conducted a comprehensive integrated genomic study, including the most detailed analysis of BAP1 alterations to date. We identified histology-independent molecular prognostic subsets, and defined a novel genomic subtype with TP53 and SETDB1 mutations and extensive loss of heterozygosity. We also report strong expression of the immune checkpoint gene VISTA in epithelioid MPM, strikingly higher than in other solid cancers, with implications for the immune response to MPM and for its immunotherapy. Our findings highlight new avenues for further investigation of MPM biology and novel therapeutic options.

388 citations


Journal ArticleDOI
TL;DR: It is shown that clonal evolution occurs frequently during treatment, reflecting substantial subclonal complexity in breast cancer that has progressed after prior endocrine therapy and suggests that early and late progression have distinct mechanisms of resistance.
Abstract: CDK4/6 inhibition with endocrine therapy is now a standard of care for advanced estrogen receptor positive breast cancer. Mechanisms of CDK4/6 inhibitor resistance have been described pre-clinically, with limited evidence from clinical samples. We conducted paired baseline and end of treatment circulating tumor DNA sequencing from 195 patients in the PALOMA-3 randomized phase III trial of palbociclib plus fulvestrant versus placebo plus fulvestrant. We show that clonal evolution occurs frequently during treatment, reflecting substantial sub-clonal complexity in breast cancer that has progressed after prior endocrine therapy. RB1 mutations emerged only in the palbociclib plus fulvestrant arm and in a minority of patients (6/127, 4.7%, p=0.041). New driver mutations emerged in PIK3CA (p=0.00069) and ESR1 after treatment in both arms, in particular ESR1 Y537S (p=0.0037). Evolution of driver gene mutations was uncommon in patients progressing early on palbociclib plus fulvestrant but common in patients progressing later on treatment. These findings inform future treatment strategies to address resistance to palbociclib plus fulvestrant.

350 citations


Journal ArticleDOI
TL;DR: Although detection of AR amplifications did not outperform standard prognostic biomarkers, AR gene structural rearrangements truncating the ligand binding domain were identified in several patients with primary resistance and suggest that liquid biopsy analysis can guide the use of AR-targeted therapy in general practice.
Abstract: Primary resistance to androgen receptor (AR)-directed therapies in metastatic castration-resistant prostate cancer (mCRPC) is poorly understood. We randomized 202 patients with treatment-naive mCRPC to abiraterone or enzalutamide and performed whole-exome and deep targeted 72-gene sequencing of plasma cell-free DNA prior to therapy. For these agents, which have never been directly compared, time to progression was similar. Defects in BRCA2 and ATM were strongly associated with poor clinical outcomes independently of clinical prognostic factors and circulating tumor DNA abundance. Somatic alterations in TP53, previously linked to reduced tumor dependency on AR signaling, were also independently associated with rapid resistance. Although detection of AR amplifications did not outperform standard prognostic biomarkers, AR gene structural rearrangements truncating the ligand binding domain were identified in several patients with primary resistance. These findings establish genomic drivers of resistance to first-line AR-directed therapy in mCRPC and identify potential minimally invasive biomarkers.Significance: Leveraging plasma specimens collected in a large randomized phase II trial, we report the relative impact of common circulating tumor DNA alterations on patient response to the most widely used therapies for advanced prostate cancer. Our findings suggest that liquid biopsy analysis can guide the use of AR-targeted therapy in general practice. Cancer Discov; 8(4); 444-57. ©2018 AACR.See related commentary by Jayaram et al., p. 392This article is highlighted in the In This Issue feature, p. 371.

345 citations


Journal ArticleDOI
TL;DR: This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that coloreCTal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion.
Abstract: To understand the genetic drivers of immune recognition and evasion in colorectal cancer (CRC), we analyzed 1,211 CRC primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas CRC cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of CRC, had a high rate of significantly mutated genes in important immune modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy number alterations and copy-neutral loss of heterozygosity (CN-LOH). WNT/β-catenin signaling genes were significantly mutated in all CRC subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of CRC demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration, and furthermore, that CRC tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion.

Journal ArticleDOI
TL;DR: Proof of concept that RET fusions can mediate acquired resistance to EGFR TKIs and that combined EGFR and RET inhibition with osimertinib/BLU-667 may be a well-tolerated and effective treatment strategy for such patients are provided.
Abstract: We present a cohort of 41 patients with osimertinib resistance biopsies, including two with an acquired CCDC6-RET fusion. While RET fusions have been identified in resistant EGFR-mutant NSCLC, their role in acquired resistance to EGFR inhibitors is not well described. To assess the biological implications of RET fusions in an EGFR-mutant cancer, we expressed CCDC6-RET in PC9 (EGFR del19) and MGH134 (EGFR L858R/T790M) cells and found that CCDC6-RET was sufficient to confer resistance to EGFR-TKIs. The selective RET inhibitors BLU-667 or cabozantinib resensitized CCDC6-RET-expressing cells to EGFR inhibition. Finally, we treated two patients with EGFR-mutant NSCLC and RET-mediated resistance with osimertinib and BLU-667. The combination was well-tolerated and led to rapid radiographic response in both patients. This study provides proof-of-concept that RET fusions can mediate acquired resistance to EGFR TKIs and that combined EGFR and RET inhibition with osimertinib/BLU-667 may be a well-tolerated and effective treatment strategy for such patients.

Journal ArticleDOI
TL;DR: It is observed that tumors treated with PD-1/PD-L1 blocking antibodies develop resistance through the upregulation of CD38, which is induced by all-trans retinoic acid and IFNβ in the tumor microenvironment, providing a novel mechanism of acquired resistance to immune checkpoint therapy.
Abstract: Although treatment with immune checkpoint inhibitors provides promising benefit for cancer patients, optimal use is encumbered by high resistance rates and requires a thorough understanding of resistance mechanisms. We observed that tumors treated with PD-1/PD-L1 blocking antibodies develop resistance through the up-regulation of CD38, which is induced by all-trans retinoic acid (ATRA) and IFN-β in the tumor microenvironment. In vitro and in vivo studies demonstrate that CD38 inhibits CD8+ T cell function via adenosine receptor signaling, and that CD38 or adenosine receptor blockade are effective strategies to overcome the resistance. Large datasets of human tumors reveal expression of CD38 in a subset of tumors with high levels of basal or treatment-induced T cell infiltration, where immune checkpoint therapies are thought to be most effective. These findings provide a novel mechanism of acquired resistance to immune checkpoint therapy and an opportunity to expand their efficacy in cancer treatment.

Journal ArticleDOI
TL;DR: Based on preclinical data, combination therapies with other anticancer agents and the development of a new generation of compounds may open new possibilities for targeting BET proteins as effective anticancer strategies.
Abstract: Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate gene expression and are involved in cancer pathogenesis. Over the last years, several BET inhibitors have been developed and clinically tested. Results from the first clinical trials show limited single-agent activity in a small subset of patients with hematologic malignancies and in NUT carcinoma. Adverse events have been observed and may limit treatment compliance. Here, we review the preclinical rationale for targeting BET proteins in cancer and the preliminary results from clinical trials, and outline future directions for the use of BET inhibitors as antitumor agents. Significance: BET inhibitors represent a new class of anticancer agents. Results from the first clinical trials confirm the antitumor potential of BET inhibitors, but their efficacy as single agents seems to be limited. Based on preclinical data, combination therapies with other anticancer agents and the development of a new generation of compounds may open new possibilities for targeting BET proteins as effective anticancer strategies. Cancer Discov; 8(1); 24–36. ©2017 AACR.

Journal ArticleDOI
TL;DR: AMG 176 is a potent, selective, and orally bioavailable MCL1 inhibitor that induces a rapid commitment to apoptosis in models of hematologic malignancies and the synergistic combination of AMG 176 and venetoclax is synergistic in acute myeloid leukemia (AML) tumor models and in primary patient samples at tolerated doses.
Abstract: The prosurvival BCL2 family member MCL1 is frequently dysregulated in cancer. To overcome the significant challenges associated with inhibition of MCL1 protein-protein interactions, we rigorously applied small-molecule conformational restriction, which culminated in the discovery of AMG 176, the first selective MCL1 inhibitor to be studied in humans. We demonstrate that MCL1 inhibition induces a rapid and committed step toward apoptosis in subsets of hematologic cancer cell lines, tumor xenograft models, and primary patient samples. With the use of a human MCL1 knock-in mouse, we demonstrate that MCL1 inhibition at active doses of AMG 176 is tolerated and correlates with clear pharmacodynamic effects, demonstrated by reductions in B cells, monocytes, and neutrophils. Furthermore, the combination of AMG 176 and venetoclax is synergistic in acute myeloid leukemia (AML) tumor models and in primary patient samples at tolerated doses. These results highlight the therapeutic promise of AMG 176 and the potential for combinations with other BH3 mimetics. SIGNIFICANCE: AMG 176 is a potent, selective, and orally bioavailable MCL1 inhibitor that induces a rapid commitment to apoptosis in models of hematologic malignancies. The synergistic combination of AMG 176 and venetoclax demonstrates robust activity in models of AML at tolerated doses, highlighting the promise of BH3-mimetic combinations in hematologic cancers.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.

Journal ArticleDOI
TL;DR: Repotrectinib (TPX-0005) is a rationally designed, low-molecular-weight, macrocyclic TKI that is selective and highly potent against ROS1, TRKA-C, and ALK and may represent an effective therapeutic option for patients with ROS1-, NTRK1-3-, or ALK-rearranged malignancies who have progressed on earlier-generation TKIs.
Abstract: The use of tyrosine kinase inhibitors (TKI) with activity against ALK, ROS1, or TRKA–C can result in significant clinical benefit in patients with diverse tumors harboring ALK, ROS1, or NTRK1–3 rearrangements; however, resistance invariably develops. The emergence of on-target kinase domain mutations represents a major mechanism of acquired resistance. Solvent-front substitutions such as ALKG1202R, ROS1G2032R or ROS1D2033N, TRKAG595R, and TRKCG623R are among the most recalcitrant of these mechanisms. Repotrectinib (TPX-0005) is a rationally designed, low-molecular-weight, macrocyclic TKI that is selective and highly potent against ROS1, TRKA–C, and ALK. Importantly, repotrectinib exhibits activity against a variety of solvent-front substitutions in vitro and in vivo. As clinical proof of concept, in an ongoing first-in-human phase I/II trial, repotrectinib achieved confirmed responses in patients with ROS1 or NTRK3 fusion–positive cancers who had relapsed on earlier-generation TKIs due to ROS1 or TRKC solvent-front substitution-mediated resistance. SIGNIFICANCE: Repotrectinib (TPX-0005), a next-generation ROS1, pan-TRK, and ALK TKI, overcomes resistance due to acquired solvent-front mutations involving ROS1, NTRK1–3, and ALK. Repotrectinib may represent an effective therapeutic option for patients with ROS1-, NTRK1–3-, or ALK-rearranged malignancies who have progressed on earlier-generation TKIs. Cancer Discov; 8(10); 1–10. ©2018 AACR.

Journal ArticleDOI
TL;DR: The data suggest that robust, self-regenerating pools of CD8+ NY-ESO-1c259T cells produce a continuing supply of effector cells over several months that mediate clinically meaningful antitumor effects despite prolonged exposure to antigen.
Abstract: We evaluated the safety and activity of autologous T cells expressing NY-ESO-1c259, an affinity-enhanced T-cell receptor (TCR) recognizing an HLA-A2-restricted NY-ESO-1/LAGE1a-derived peptide, in patients with metastatic synovial sarcoma (NY-ESO-1c259T cells). Confirmed antitumor responses occurred in 50% of patients (6/12) and were characterized by tumor shrinkage over several months. Circulating NY-ESO-1c259T cells were present postinfusion in all patients and persisted for at least 6 months in all responders. Most of the infused NY-ESO-1c259T cells exhibited an effector memory phenotype following ex vivo expansion, but the persisting pools comprised largely central memory and stem-cell memory subsets, which remained polyfunctional and showed no evidence of T-cell exhaustion despite persistent tumor burdens. Next-generation sequencing of endogenous TCRs in CD8+ NY-ESO-1c259T cells revealed clonal diversity without contraction over time. These data suggest that regenerative pools of NY-ESO-1c259T cells produced a continuing supply of effector cells to mediate sustained, clinically meaningful antitumor effects.Significance: Metastatic synovial sarcoma is incurable with standard therapy. We employed engineered T cells targeting NY-ESO-1, and the data suggest that robust, self-regenerating pools of CD8+ NY-ESO-1c259T cells produce a continuing supply of effector cells over several months that mediate clinically meaningful antitumor effects despite prolonged exposure to antigen. Cancer Discov; 8(8); 944-57. ©2018 AACR.See related commentary by Keung and Tawbi, p. 914This article is highlighted in the In This Issue feature, p. 899.

Journal ArticleDOI
TL;DR: In this article, a platform for functionally profiling DNA repair in short-term patient-derived serous ovarian cancers (HGSC) organoids was proposed, based on genomic analysis and functional testing of organoids.
Abstract: Based on genomic analysis, fifty percent of high grade serous ovarian cancers (HGSC) are predicted to have DNA repair defects. Whether this substantial subset of HGSCs actually have functional repair defects remains unknown. Here, we devise a platform for functionally profiling DNA repair in short-term patient-derived HGSC organoids. We tested 33 organoid cultures derived from 22 HGSC patients for defects in homologous recombination (HR) and replication fork protection. Regardless of DNA repair gene mutational status, a functional defect in HR in the organoids correlated with PARP inhibitor sensitivity. A functional defect in replication fork protection correlated with carboplatin and CHK1 and ATR inhibitor sensitivity. Our results indicate that a combination of genomic analysis and functional testing of organoids allows for the identification of targetable DNA damage repair defects. Larger numbers of patient-derived organoids must be analyzed to determine whether these assays can reproducibly predict patient response in the clinic.

Journal ArticleDOI
TL;DR: First-in-human testing of BLU-667 significantly inhibited RET signaling and induced durable clinical responses in patients with RET-altered NSCLC and MTC without notable off-target toxicity, providing clinical validation for selective RET targeting.
Abstract: The receptor tyrosine kinase rearranged during transfection (RET) is an oncogenic driver activated in multiple cancers, including non-small cell lung cancer (NSCLC), medullary thyroid cancer (MTC), and papillary thyroid cancer. No approved therapies have been designed to target RET; treatment has been limited to multikinase inhibitors (MKI), which can have significant off-target toxicities and limited efficacy. BLU-667 is a highly potent and selective RET inhibitor designed to overcome these limitations. In vitro, BLU-667 demonstrated ≥10-fold increased potency over approved MKIs against oncogenic RET variants and resistance mutants. In vivo, BLU-667 potently inhibited growth of NSCLC and thyroid cancer xenografts driven by various RET mutations and fusions without inhibiting VEGFR2. In first-in-human testing, BLU-667 significantly inhibited RET signaling and induced durable clinical responses in patients with RET-altered NSCLC and MTC without notable off-target toxicity, providing clinical validation for selective RET targeting.Significance: Patients with RET-driven cancers derive limited benefit from available MKIs. BLU-667 is a potent and selective RET inhibitor that induces tumor regression in cancer models with RET mutations and fusions. BLU-667 attenuated RET signaling and produced durable clinical responses in patients with RET-altered tumors, clinically validating selective RET targeting. Cancer Discov; 8(7); 836-49. ©2018 AACR.See related commentary by Iams and Lovly, p. 797This article is highlighted in the In This Issue feature, p. 781.

Journal ArticleDOI
TL;DR: The latest findings on the DNA replication stress response are discussed and the various mechanisms through which activated oncogenes induce replication stress are examined, which may provide new avenues for targeted cancer treatment.
Abstract: Oncogene activation disturbs cellular processes and accommodates a complex landscape of changes in the genome that contribute to genomic instability, which accelerates mutation rates and promotes tumorigenesis. Part of this cellular turmoil involves deregulation of physiologic DNA replication, widely described as replication stress. Oncogene-induced replication stress is an early driver of genomic instability and is attributed to a plethora of factors, most notably aberrant origin firing, replication-transcription collisions, reactive oxygen species, and defective nucleotide metabolism.Significance: Replication stress is a fundamental step and an early driver of tumorigenesis and has been associated with many activated oncogenes. Deciphering the mechanisms that contribute to the replication stress response may provide new avenues for targeted cancer treatment. In this review, we discuss the latest findings on the DNA replication stress response and examine the various mechanisms through which activated oncogenes induce replication stress. Cancer Discov; 8(5); 537-55. ©2018 AACR.

Journal ArticleDOI
TL;DR: Clinical application of multiplex sequencing can identify biomarkers of treatment response to contemporary systemic therapies in metastatic esophagogastric cancer and guide strategies to overcome drug resistance, and sheds light on the biological complexity and the dynamic nature of therapeutic resistance.
Abstract: The incidence of esophagogastric cancer is rapidly rising, but only a minority of patients derive durable benefit from current therapies. Chemotherapy as well as anti-HER2 and PD-1 antibodies are standard treatments. To identify predictive biomarkers of drug sensitivity and mechanisms of resistance, we implemented prospective tumor sequencing of patients with metastatic esophagogastric cancer. There was no association between homologous recombination deficiency defects and response to platinum-based chemotherapy. Patients with microsatellite instability-high tumors were intrinsically resistant to chemotherapy but more likely to achieve durable responses to immunotherapy. The single Epstein-Barr virus-positive patient achieved a durable, complete response to immunotherapy. The level of ERBB2 amplification as determined by sequencing was predictive of trastuzumab benefit. Selection for a tumor subclone lacking ERBB2 amplification, deletion of ERBB2 exon 16, and comutations in the receptor tyrosine kinase, RAS, and PI3K pathways were associated with intrinsic and/or acquired trastuzumab resistance. Prospective genomic profiling can identify patients most likely to derive durable benefit to immunotherapy and trastuzumab and guide strategies to overcome drug resistance.Significance: Clinical application of multiplex sequencing can identify biomarkers of treatment response to contemporary systemic therapies in metastatic esophagogastric cancer. This large prospective analysis sheds light on the biological complexity and the dynamic nature of therapeutic resistance in metastatic esophagogastric cancers. Cancer Discov; 8(1); 49-58. ©2017 AACR.See related commentary by Sundar and Tan, p. 14See related article by Pectasides et al., p. 37This article is highlighted in the In This Issue feature, p. 1.

Journal ArticleDOI
TL;DR: VU661013 is described, a novel, potent, selective MCL1 inhibitor that destabilizes BIM/MCL1 association, leads to apoptosis in AML, and is active in venetoclax-resistant cells and patient-derived xenografts.
Abstract: Suppression of apoptosis by expression of antiapoptotic BCL2 family members is a hallmark of acute myeloblastic leukemia (AML). Induced myeloid leukemia cell differentiation protein (MCL1), an antiapoptotic BCL2 family member, is commonly upregulated in AML cells and is often a primary mode of resistance to treatment with the BCL2 inhibitor venetoclax. Here, we describe VU661013, a novel, potent, selective MCL1 inhibitor that destabilizes BIM/MCL1 association, leads to apoptosis in AML, and is active in venetoclax-resistant cells and patient-derived xenografts. In addition, VU661013 was safely combined with venetoclax for synergy in murine models of AML. Importantly, BH3 profiling of patient samples and drug-sensitivity testing ex vivo accurately predicted cellular responses to selective inhibitors of MCL1 or BCL2 and showed benefit of the combination. Taken together, these data suggest a strategy of rationally using BCL2 and MCL1 inhibitors in sequence or in combination in AML clinical trials. SIGNIFICANCE: Targeting antiapoptotic proteins in AML is a key therapeutic strategy, and MCL1 is a critical antiapoptotic oncoprotein. Armed with novel MCL1 inhibitors and the potent BCL2 inhibitor venetoclax, it may be possible to selectively induce apoptosis by combining or thoughtfully sequencing these inhibitors based on a rational evaluation of AML.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.

Journal ArticleDOI
TL;DR: Sundar et al. as mentioned in this paper used multiregion sequencing to evaluate genomic heterogeneity in Gastroesophageal adenocarcinoma (GEA) and found that genomic biomarkers were recurrently discrepant between the primary tumor and untreated metastases.
Abstract: Gastroesophageal adenocarcinoma (GEA) is a lethal disease where targeted therapies, even when guided by genomic biomarkers, have had limited efficacy. A potential reason for the failure of such therapies is that genomic profiling results could commonly differ between the primary and metastatic tumors. To evaluate genomic heterogeneity, we sequenced paired primary GEA and synchronous metastatic lesions across multiple cohorts, finding extensive differences in genomic alterations, including discrepancies in potentially clinically relevant alterations. Multiregion sequencing showed significant discrepancy within the primary tumor (PT) and between the PT and disseminated disease, with oncogene amplification profiles commonly discordant. In addition, a pilot analysis of cell-free DNA (cfDNA) sequencing demonstrated the feasibility of detecting genomic amplifications not detected in PT sampling. Lastly, we profiled paired primary tumors, metastatic tumors, and cfDNA from patients enrolled in the personalized antibodies for GEA (PANGEA) trial of targeted therapies in GEA and found that genomic biomarkers were recurrently discrepant between the PT and untreated metastases. Divergent primary and metastatic tissue profiling led to treatment reassignment in 32% (9/28) of patients. In discordant primary and metastatic lesions, we found 87.5% concordance for targetable alterations in metastatic tissue and cfDNA, suggesting the potential for cfDNA profiling to enhance selection of therapy.Significance: We demonstrate frequent baseline heterogeneity in targetable genomic alterations in GEA, indicating that current tissue sampling practices for biomarker testing do not effectively guide precision medicine in this disease and that routine profiling of metastatic lesions and/or cfDNA should be systematically evaluated. Cancer Discov; 8(1); 37-48. ©2017 AACR.See related commentary by Sundar and Tan, p. 14See related article by Janjigian et al., p. 49This article is highlighted in the In This Issue feature, p. 1.

Journal ArticleDOI
Brian Olson1, Yadi Li1, Yu Lin1, Edison T. Liu, Akash Patnaik1 
TL;DR: Pros and cons of different cancer mouse models are reviewed, and how they can be used as platforms to predict efficacy and resistance to cancer immunotherapies are reviewed.
Abstract: Immunotherapy has revolutionized cancer therapy, largely attributed to the success of immune-checkpoint blockade. However, there are subsets of patients across multiple cancers who have not shown robust responses to these agents. A major impediment to progress in the field is the availability of faithful mouse models that recapitulate the complexity of human malignancy and immune contexture within the tumor microenvironment. These models are urgently needed across all malignancies to interrogate and predict antitumor immune responses and therapeutic efficacy in clinical trials. Herein, we seek to review pros and cons of different cancer mouse models, and how they can be used as platforms to predict efficacy and resistance to cancer immunotherapies. Significance: Although immunotherapy has shown substantial benefit in the treatment of a variety of malignancies, a key hurdle toward the advancement of these therapies is the availability of immunocompetent preclinical mouse models that recapitulate human disease. Here, we review the evolution of preclinical mouse models and their utility as coclinical platforms for mechanistic interrogation of cancer immunotherapies. Cancer Discov; 8(11); 1358–65. ©2018 AACR.

Journal ArticleDOI
TL;DR: This work demonstrates that autophagy is critical pancreatic tumor maintenance through tumor cell-intrinsic and -extrinsics mechanisms and illustrates the importance of assessing complex biological processes in relevant autochthonous models.
Abstract: Autophagy has been shown to be elevated in pancreatic adenocarcinoma (PDAC) and its role in promoting established tumor growth has made it a promising therapeutic target. However, due to limitations of prior mouse models as well as the lack of potent and selective autophagy inhibitors, the ability to fully assess the mechanistic basis of how autophagy supports pancreatic cancer has been limited. To test the feasibility of treating PDAC using autophagy inhibition and further our understanding of the mechanisms of pro-tumor effects of autophagy, we developed a novel mouse model that allowed the acute and reversible inhibition of autophagy. We observed that autophagy inhibition causes significant tumor regression in an autochthonous mouse model of PDAC. A detailed analysis of these effects indicated that the tumor regression was likely multifactorial, involving both tumor cell intrinsic as well as host effects. Thus, our study supports autophagy inhibition in PDAC may have future utility in the treatment of pancreatic cancer and illustrates the importance of assessing complex biological processes in relevant autochthonous models.

Journal ArticleDOI
Andrew J. Aguirre, Jonathan A. Nowak1, Jonathan A. Nowak2, Nicholas D. Camarda, Richard A. Moffitt3, Arezou A. Ghazani4, Arezou A. Ghazani2, Arezou A. Ghazani1, Mehlika Hazar-Rethinam2, Srivatsan Raghavan, Jaegil Kim4, Lauren K. Brais2, Dorisanne Y. Ragon2, Marisa W. Welch2, Emma Reilly2, Devin McCabe, Lori Marini1, Lori Marini2, Kristin Anderka4, Karla Helvie2, Karla Helvie1, Nelly Oliver1, Nelly Oliver2, Ana Babic2, Annacarolina da Silva2, Annacarolina da Silva1, Brandon Nadres2, Emily E. Van Seventer2, Heather A. Shahzade2, Joseph P. St. Pierre2, Kelly P. Burke1, Kelly P. Burke2, Thomas E. Clancy2, Thomas E. Clancy1, James M. Cleary2, James M. Cleary1, Leona A. Doyle2, Leona A. Doyle1, Kunal Jajoo1, Kunal Jajoo2, Nadine Jackson McCleary1, Nadine Jackson McCleary2, Jeffrey A. Meyerhardt2, Jeffrey A. Meyerhardt1, Janet E. Murphy2, Kimmie Ng1, Kimmie Ng2, Anuj K. Patel2, Anuj K. Patel1, Kimberly Perez1, Kimberly Perez2, Michael H. Rosenthal2, Michael H. Rosenthal1, Douglas A. Rubinson2, Douglas A. Rubinson1, Marvin Ryou2, Marvin Ryou1, Geoffrey I. Shapiro1, Geoffrey I. Shapiro2, Ewa Sicinska2, Stuart G. Silverman2, Stuart G. Silverman1, Rebecca J. Nagy, Richard B. Lanman, Deborah Knoerzer, Dean Welsch, Matthew B. Yurgelun1, Matthew B. Yurgelun2, Charles S. Fuchs, Levi A. Garraway, Gad Getz4, Gad Getz2, Jason L. Hornick2, Jason L. Hornick1, Bruce E. Johnson, Matthew H. Kulke1, Matthew H. Kulke2, Robert J. Mayer2, Robert J. Mayer1, Jeffrey W. Miller2, Paul B. Shyn1, Paul B. Shyn2, David A. Tuveson5, Nikhil Wagle, Jen Jen Yeh6, William C. Hahn, Ryan B. Corcoran2, Scott L. Carter, Brian M. Wolpin1, Brian M. Wolpin2 
TL;DR: Using an integrated multidisciplinary biopsy program, it is demonstrated that real-time genomic characterization of advanced PDAC can identify clinically relevant alterations that inform management of this difficult disease.
Abstract: Clinically relevant subtypes exist for pancreatic ductal adenocarcinoma (PDAC), but molecular characterization is not yet standard in clinical care. We implemented a biopsy protocol to perform time-sensitive whole exome sequencing and RNA-sequencing for patients with advanced PDAC. Therapeutically relevant genomic alterations were identified in 48% (34/71) and pathogenic/likely pathogenic germline alterations in 18% (13/71) of patients. Overall, 30% (21/71) of enrolled patients experienced a change in clinical management as a result of genomic data. Twenty-six patients had germline and/or somatic alterations in DNA-damage repair genes, and 5 additional patients had mutational signatures of homologous recombination deficiency but no identified causal genomic alteration. Two patients had oncogenic in-frame BRAF deletions, and we report the first clinical evidence that this alteration confers sensitivity to MAP-kinase pathway inhibition. Moreover, we identified tumor/stroma gene expression signatures with clinical relevance. Collectively, these data demonstrate the feasibility and value of real-time genomic characterization of advanced PDAC.

Journal ArticleDOI
TL;DR: Using patient-derived tumor xenografts, it is demonstrated that targeting of patient-specific SCNAs leads to significant decrease in tumor burden, providing a road map for genome-informed treatment of osteosarcoma.
Abstract: Osteosarcoma is a highly aggressive cancer for which treatment has remained essentially unchanged for more than 30 years. Osteosarcoma is characterized by widespread and recurrent somatic copy-number alterations (SCNA) and structural rearrangements. In contrast, few recurrent point mutations in protein-coding genes have been identified, suggesting that genes within SCNAs are key oncogenic drivers in this disease. SCNAs and structural rearrangements are highly heterogeneous across osteosarcoma cases, suggesting the need for a genome-informed approach to targeted therapy. To identify patient-specific candidate drivers, we used a simple heuristic based on degree and rank order of copy-number amplification (identified by whole-genome sequencing) and changes in gene expression as identified by RNA sequencing. Using patient-derived tumor xenografts, we demonstrate that targeting of patient-specific SCNAs leads to significant decrease in tumor burden, providing a road map for genome-informed treatment of osteosarcoma. SIGNIFICANCE: Osteosarcoma is treated with a chemotherapy regimen established 30 years ago. Although osteosarcoma is genomically complex, we hypothesized that tumor-specific dependencies could be identified within SCNAs. Using patient-derived tumor xenografts, we found a high degree of response for "genome-matched" therapies, demonstrating the utility of a targeted genome-informed approach.This article is highlighted in the In This Issue feature, p. 1.

Journal ArticleDOI
TL;DR: It is demonstrated that stromal adipocytes are donors of lipids that mediate melanoma progression and represent a new target aimed at interrupting adipocyte-melanoma cross-talk, a novel microenvironmental therapeutic target.
Abstract: Advanced, metastatic melanomas frequently grow in subcutaneous tissues and portend a poor prognosis. Though subcutaneous tissues are largely composed of adipocytes, the mechanisms by which adipocytes influence melanoma are poorly understood. Using in vitro and in vivo models, we find that adipocytes increase proliferation and invasion of adjacent melanoma cells. Additionally, adipocytes directly transfer lipids to melanoma cells, which alters tumor cell metabolism. Adipocyte-derived lipids are transferred to melanoma cells through the FATP/SLC27A family of lipid transporters expressed on the tumor cell surface. Among the six FATP/SLC27A family members, melanomas significantly overexpress FATP1/SLC27A1. Melanocyte-specific FATP1 expression cooperates with BRAFV600E in transgenic zebrafish to accelerate melanoma development, an effect that is similarly seen in mouse xenograft studies. Pharmacologic blockade of FATPs with the small-molecule inhibitor Lipofermata abrogates lipid transport into melanoma cells and reduces melanoma growth and invasion. These data demonstrate that stromal adipocytes can drive melanoma progression through FATP lipid transporters and represent a new target aimed at interrupting adipocyte-melanoma cross-talk.Significance: We demonstrate that stromal adipocytes are donors of lipids that mediate melanoma progression. Adipocyte-derived lipids are taken up by FATP proteins that are aberrantly expressed in melanoma. Inhibition of FATPs decreases melanoma lipid uptake, invasion, and growth. We provide a mechanism for how stromal adipocytes drive tumor progression and demonstrate a novel microenvironmental therapeutic target. Cancer Discov; 8(8); 1006-25. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 899.

Journal ArticleDOI
TL;DR: Early data demonstrate that the combination of pembrolizumab with intratumoral SD-101 is well tolerated and can induce immune activation at the tumor site, which can potentially increase clinical efficacy with minimal additional toxicity relative to PD-1 blockade alone.
Abstract: PD-1 inhibitors are approved for treating advanced melanoma, but resistance has been observed. This phase 1b trial evaluated intratumoral SD-101, a synthetic CpG-oligonucleotide that stimulates Toll-like receptor 9 (TLR9), in combination with pembrolizumab in patients with unresectable or metastatic malignant melanoma. The most common adverse events related to SD-101 were injection site reactions and transient, mild-to-moderate "flu-like" symptoms. Among the 9 patients naive to anti-PD-1 therapy, the overall response rate (ORR) was 78%. The estimated 12 month progression free survival (PFS) rate was 88%, and overall survival (OS) rate was 89%. Among 13 patients having prior anti-PD-1 therapy, the ORR was 15%. RNA profiling of tumor biopsies demonstrated increased CD8+ T cells, NK cells, cytotoxic cells, dendritic cells, and B cells. The combination of intratumoral SD-101 and pembrolizumab was well tolerated and induced broad immune activation in the tumor microenvironment with durable tumor responses in both peripheral and visceral lesions.

Journal ArticleDOI
TL;DR: It is found that SHP099/MEKi combinations could have therapeutic utility in multiple malignancies and prevent adaptive resistance in multiple cancer models expressing mutant and wild-type KRAS.
Abstract: Adaptive resistance to MEK inhibitors (MEKi) typically occurs via induction of genes for different receptor tyrosine kinases (RTK) and/or their ligands, even in tumors of the same histotype, making combination strategies challenging SHP2 (PTPN11) is required for RAS/ERK pathway activation by most RTKs and might provide a common resistance node We found that combining the SHP2 inhibitor SHP099 with a MEKi inhibited the proliferation of multiple cancer cell lines in vitro PTPN11 knockdown/MEKi treatment had similar effects, whereas expressing SHP099 binding–defective PTPN11 mutants conferred resistance, demonstrating that SHP099 is on-target SHP099/trametinib was highly efficacious in xenograft and/or genetically engineered models of KRAS-mutant pancreas, lung, and ovarian cancers and in wild-type RAS-expressing triple-negative breast cancer SHP099 inhibited activation of KRAS mutants with residual GTPase activity, impeded SOS/RAS/MEK/ERK1/2 reactivation in response to MEKi, and blocked ERK1/2-dependent transcriptional programs We conclude that SHP099/MEKi combinations could have therapeutic utility in multiple malignancies Significance: MEK inhibitors show limited efficacy as single agents, in part because of the rapid development of adaptive resistance We find that SHP2/MEK inhibitor combinations prevent adaptive resistance in multiple cancer models expressing mutant and wild-type KRAS Cancer Discov; 8(10); 1237–49 ©2018 AACR See related commentary by Torres-Ayuso and Brognard, p 1210 This article is highlighted in the In This Issue feature, p 1195