scispace - formally typeset
Search or ask a question

Showing papers by "Kay Prüfer published in 2015"


Journal ArticleDOI
13 Aug 2015-Nature
TL;DR: DNA from a 37,000–42,000-year-old modern human from Peştera cu Oase, Romania is analysed, finding that on the order of 6–9% of the genome of the Oase individual is derived from Neanderthals, more than any other modern human sequenced to date.
Abstract: Neanderthals are thought to have disappeared in Europe approximately 39,000–41,000 years ago but they have contributed 1–3% of the DNA of present-day people in Eurasia1. Here we analyse DNA from a 37,000–42,000-year-old2 modern human from Pestera cu Oase, Romania. Although the specimen contains small amounts of human DNA, we use an enrichment strategy to isolate sites that are informative about its relationship to Neanderthals and present-day humans. We find that on the order of 6–9% of the genome of the Oase individual is derived from Neanderthals, more than any other modern human sequenced to date. Three chromosomal segments of Neanderthal ancestry are over 50 centimorgans in size, indicating that this individual had a Neanderthal ancestor as recently as four to six generations back. However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe.

572 citations


Journal ArticleDOI
27 Mar 2015-Science
TL;DR: This work analyzes the transcriptomes of distinct progenitor subpopulations isolated by a cell polarity–based approach from developing mouse and human neocortex and identifies 56 genes preferentially expressed in human apical and basal radial glia that lack mouse orthologs, including ARHGAP11B, which has the highest degree of radialglia–specific expression.
Abstract: Evolutionary expansion of the human neocortex reflects increased amplification of basal progenitors in the subventricular zone, producing more neurons during fetal corticogenesis In this work, we analyze the transcriptomes of distinct progenitor subpopulations isolated by a cell polarity-based approach from developing mouse and human neocortex We identify 56 genes preferentially expressed in human apical and basal radial glia that lack mouse orthologs Among these, ARHGAP11B has the highest degree of radial glia-specific expression ARHGAP11B arose from partial duplication of ARHGAP11A (which encodes a Rho guanosine triphosphatase-activating protein) on the human lineage after separation from the chimpanzee lineage Expression of ARHGAP11B in embryonic mouse neocortex promotes basal progenitor generation and self-renewal and can increase cortical plate area and induce gyrification Hence, ARHGAP11B may have contributed to evolutionary expansion of human neocortex

466 citations


Journal ArticleDOI
TL;DR: The number of Denisovan individuals known to three is extended to three, with the nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans.
Abstract: Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans.

161 citations


Journal ArticleDOI
TL;DR: The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites and there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the k Kiwi branch, which may be linked to its nocturnal lifestyle.
Abstract: Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood. We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi’s odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle. The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites.

78 citations


Journal ArticleDOI
03 Nov 2015-eLife
TL;DR: A computational method is developed that compares postmortem damage patterns of a test dataset with bona fide ancient and modern DNA and finds that putative wheat DNA is most likely not of ancient origin.
Abstract: Ancient DNA, that is to say DNA extracted from fossils and ancient remains, provides a window into the past lives of humans, animals and plants. But working with ancient DNA is challenging; DNA decomposes with time, and so ancient DNA is often fragmented, damaged and present in tiny quantities. Furthermore, ancient DNA is also easily contaminated by modern DNA from those handling it and its surroundings. Researchers have therefore developed special protocols for working with ancient DNA and tests for its contamination. One approach used to check that DNA is of ancient origin identifies a pattern of damage that is specific to ancient DNA. This damage changes the building blocks that make up DNA, causing one (called cytosine or C) to be misread as another (thymine or T). This substitution occurs most frequently at the ends of ancient DNA molecules, and occurs less often along its length, forming a detectable and characteristic pattern of damage. A common way to analyse ancient DNA is to sequence it and then compare the resulting sequences to the genomes of modern organisms to identify its origins. In a study published earlier in 2015, investigators sequenced the DNA present in sediments obtained from a submerged archaeological site off the coast of the Isle of Wight in the United Kingdom. This previous study identified some DNA fragments that matched sequences in the wheat genome. This led the investigators to conclude that wheat was present in the British Isles around 8000 years ago, some 2000 years earlier than previously thought. However, possibly owing to the small number of fragments that were found, the previous study did not check if the damage pattern matched that expected for ancient DNA. Now, Weis et al. have developed a new computational method that tests whether DNA shows a typically ancient, or typically modern, pattern of C-to-T substitutions. When this test was used to assess the wheat sequences that were previously claimed to have ancient origins, it revealed that their pattern of DNA damage did not fit statistically with those of ancient DNA. Weis et al.'s findings contest those of the earlier study, and suggest that the new statistical method could be used to authenticate ancient DNA even when the number of available sequences is low.

33 citations


Journal ArticleDOI
20 Feb 2015-Science
TL;DR: Analysis of postmortem damage patterns finds no evidence for an ancient origin of DNA sequences found in an underwater cave in Mexico, and proposes that this ancient human individual’s mitochondrial DNA belongs to haplogroup D1.
Abstract: Chatters et al. (Reports, 16 May 2014, p. 750) reported the retrieval of DNA sequences from a 12,000- to 13,000-year-old human tooth discovered in an underwater cave in Mexico's Yucatan peninsula. They propose that this ancient human individual's mitochondrial DNA (mtDNA) belongs to haplogroup D1. However, our analysis of postmortem damage patterns finds no evidence for an ancient origin of these sequences.

26 citations


Journal ArticleDOI
06 Aug 2015-PLOS ONE
TL;DR: It is speculated that since cooking reduces toxic plant compounds, consumption of cooked foods, which is specific to humans, may have resulted in relaxed constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans.
Abstract: Although human biomedical and physiological information is readily available, such information for great apes is limited. We analyzed clinical chemical biomarkers in serum samples from 277 wild- and captive-born great apes and from 312 healthy human volunteers as well as from 20 rhesus macaques. For each individual, we determined a maximum of 33 markers of heart, liver, kidney, thyroid and pancreas function, hemoglobin and lipid metabolism and one marker of inflammation. We identified biomarkers that show differences between humans and the great apes in their average level or activity. Using the rhesus macaques as an outgroup, we identified human-specific differences in the levels of bilirubin, cholinesterase and lactate dehydrogenase, and bonobo-specific differences in the level of apolipoprotein A-I. For the remaining twenty-nine biomarkers there was no evidence for lineage-specific differences. In fact, we find that many biomarkers show differences between individuals of the same species in different environments. Of the four lineage-specific biomarkers, only bilirubin showed no differences between wild- and captive-born great apes. We show that the major factor explaining the human-specific difference in bilirubin levels may be genetic. There are human-specific changes in the sequence of the promoter and the protein-coding sequence of uridine diphosphoglucuronosyltransferase 1 (UGT1A1), the enzyme that transforms bilirubin and toxic plant compounds into water-soluble, excretable metabolites. Experimental evidence that UGT1A1 is down-regulated in the human liver suggests that changes in the promoter may be responsible for the human-specific increase in bilirubin. We speculate that since cooking reduces toxic plant compounds, consumption of cooked foods, which is specific to humans, may have resulted in relaxed constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans.

7 citations