scispace - formally typeset
Search or ask a question

Showing papers by "Nathan S. Lewis published in 2020"


Journal ArticleDOI
16 Sep 2020-Joule
TL;DR: In this paper, the authors used 39 years of hourly U.S. weather data, and a macro-scale energy model to evaluate capacities and dispatch in least cost, 100% reliable electricity systems with wind and solar generation supported by long-duration storage (LDS; 10h or greater) and battery storage.

186 citations


Journal ArticleDOI
25 Sep 2020-iScience
TL;DR: Assessment of 36 years of hourly weather data over the contiguous United States (CONUS) finds the role of energy storage changes from high-cost storage competing with curtailment to fill short-term gaps between VRE generation and hourly demand to near-free storage serving as seasonal storage for VRE resources.

36 citations


Journal ArticleDOI
TL;DR: In this paper, the size distribution, coverage, electrochemical impedance, and mass-transport properties of H2 gas-bubble films were measured for both planar and microwire-array platinized n+-Si cathodes performing the hydrogen-evolution reaction in 0.50 M H2SO4(aq).
Abstract: The size-distribution, coverage, electrochemical impedance, and mass-transport properties of H2 gas-bubble films were measured for both planar and microwire-array platinized n+-Si cathodes performing the hydrogen-evolution reaction in 0.50 M H2SO4(aq). Inverted, planar n+-Si/Ti/Pt cathodes produced large, stationary bubbles which contributed to substantial increases in ohmic potential drops. In contrast, regardless of orientation, microwire array n+-Si/Ti/Pt cathodes exhibited a smaller layer of bubbles on the surface, and the formation of bubbles did not substantially increase the steady-state overpotential for H2(g) production. Experiments using an electroactive tracer species indicated that even when oriented against gravity, bubbles enhanced mass transport at the electrode surface. Microconvection due to growing and coalescing bubbles dominated effects due to macroconvection of gliding bubbles on Si microwire array cathodes. Electrodes that maintained a large number of small bubbles on the surface simultaneously exhibited low concentrations of dissolved hydrogen and small ohmic potential drops, thus exhibiting the lowest steady-state overpotentials. The results indicate that microstructured electrodes can operate acceptably for unassisted solar-driven water splitting in the absence of external convection and can function regardless of the orientation of the electrode with respect to the gravitational force vector.

30 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explored the use of electrocatalysts to convert nitrogen (N) to ammonia (NH) at ambient temperature and pressure in an environmentally friendly manner.
Abstract: Ammonia (NH₃) is essential for food production and is commercially synthesized from nitrogen (N₂) and hydrogen (H₂) using the Haber–Bosch process. Enormous amounts of ammonia are made every year in a reaction that requires high temperatures and pressures, with the Haber–Bosch accounting for ∼1.6% of total annual global energy consumption. Electrocatalysts are also being explored to convert in an environmentally friendly manner N₂ to NH₃ at ambient temperature and pressure.

29 citations


Journal ArticleDOI
TL;DR: In this article, a flow-through gas diffusion electrode (GDE) consisting of agglomerate catalysts for CO or CO2 reduction, gas channels for reactants, aqueous electrolytes for ionic transport, and metallic current collectors was simulated and evaluated using a numerical model.
Abstract: A flow-through gas diffusion electrode (GDE) consisting of agglomerate catalysts for CO or CO2 reduction, gas channels for reactants, aqueous electrolytes for ionic transport, and metallic current collectors was simulated and evaluated using a numerical model. The geometric partial current densities and Faradaic Efficiencies (FE) for CH4, C2H4 and H2 generation in GDEs were calculated and compared to the behavior of analogous aqueous-based planar electrodes. The pH-dependent kinetics for CH4 and C2H4 generation were used to represent the intrinsic catalytic characteristics for the agglomerate catalyst. The modeling indicated that relative to planar electrodes for either CO reduction (COR) or CO2 reduction (CO2R), substantial increases in electrochemical reduction rates and Faradaic efficiencies are expected when flow-through GDEs are used. The spatially resolved pH and reaction rates within the flow-through GDEs were also simulated for two different operating pHs, and the resulting transport losses were analyzed quantitatively. For CO2 reduction (CO2R), substantial loss of CO2 via chemical reaction with the locally alkaline electrolyte was observed due to the increased pH in operating GDEs.

26 citations


Journal ArticleDOI
TL;DR: In this article, high loadings of Cu were integrated on the light-facing side of Si microwire arrays used under simulated sunlight for the photoelectrochemical reduction of CO2(aq) to hydrocarbons in 0.10 M KHCO3(a)
Abstract: High loadings of Cu were integrated on the light-facing side of Si microwire arrays used under simulated sunlight for the photoelectrochemical reduction of CO2(aq) to hydrocarbons in 0.10 M KHCO3(a...

21 citations


Journal ArticleDOI
TL;DR: In this Perspective, recent developments of AFM-based techniques relevant to solar fuel research are summarized and opportunities for research are outlined.
Abstract: Integrated photoelectrochemical devices rely on the synergy between components to efficiently generate sustainable fuels from sunlight. The micro- and/or nanoscale characteristics of the components and their interfaces often control critical processes of the device, such as charge-carrier generation, electron and ion transport, surface potentials, and electrocatalysis. Understanding the spatial properties and structure–property relationships of these components can provide insight into designing scalable and efficient solar fuel components and systems. These processes can be probed ex situ or in situ with nanometer-scale spatial resolution using emerging scanning-probe techniques based on atomic force microscopy (AFM). In this Perspective, we summarize recent developments of AFM-based techniques relevant to solar fuel research. We review recent progress in AFM for (1) steady-state and dynamic light-induced surface photovoltage measurements; (2) nanoelectrical conductive measurements to resolve charge-carrier heterogeneity and junction energetics; (3) operando investigations of morphological changes, as well as surface electrochemical potentials, currents, and photovoltages in liquids. Opportunities for research include: (1) control of ambient conditions for performing AFM measurements; (2) in situ visualization of corrosion and morphological evolution of electrodes; (3) operando AFM techniques to allow nanoscale mapping of local catalytic activities and photo-induced currents and potentials.

21 citations


Journal ArticleDOI
03 Feb 2020
TL;DR: Recently developed covalent functionalization chemistry for MoS2 in the 1T′ phase enables the formation of covalently chalcogenide-carbon bonds from alkyl halides and aryl diazonium salts as discussed by the authors.
Abstract: Recently developed covalent functionalization chemistry for MoS2 in the 1T′ phase enables the formation of covalent chalcogenide–carbon bonds from alkyl halides and aryl diazonium salts. However, t...

19 citations


Journal ArticleDOI
TL;DR: In this paper, a combination of imaging, electrochemical measurements, and quantitative analyses of corrosion products indicated that extrinsic pinholes were present in the a-TiO2 films before electrochemical operation.
Abstract: Amorphous titanium dioxide (a-TiO2) films formed by atomic layer deposition can serve as protective coatings for semiconducting photoanodes in water-splitting cells using strongly alkaline aqueous electrolytes. Herein, we experimentally examine the mechanisms of failure for p+-GaAs anodes coated with a-TiO2 films (GaAs/a-TiO2). Galvanic displacement of exposed GaAs by Au allowed imaging of pinholes in the a-TiO2 coatings, and enabled collection of quantitative and statistical data associated with pinhole defects. A combination of imaging, electrochemical measurements, and quantitative analyses of corrosion products indicated that extrinsic pinholes were present in the a-TiO2 films before electrochemical operation. During electrochemical operation these pinholes led to pitting corrosion of the underlying GaAs substrate. The dominant source of pinholes was the presence of atmospheric particulate matter on the GaAs surface during deposition of the a-TiO2 layer. The pinhole density decreased substantially when the thickness of the a-TiO2 coating increased beyond 45 nm, and approached zero when the thickness of the film exceeded 112 nm. The density of pinholes in films thinner than 45 nm decreased when the a-TiO2 coating was deposited in an environmentally controlled cleanroom. Pinhole-free GaAs/a-TiO2 devices were also tested via chronoamperometry to quantify the rate of pinhole formation during electrochemistry. The time-to-failure increased with thickness, suggesting that the failure mechanism may involve diffusion or migration through the film. However, other mechanisms may also contribute to the degradation of thicker films (>112 nm). Nevertheless, as previously hypothesized, extrinsic pinhole defects formed during deposition and testing control the short-term protective performance of the a-TiO2 film for GaAs anodes evolving O2 from water.

14 citations


Journal ArticleDOI
TL;DR: Three-dimensional full-field electromagnetic simulations for the 400 - 1100 nm spectral range showed that incident broadband illumination couples to multiple waveguide modes in the TiO2 nanocones, reducing interactions of the light with the metal layer.
Abstract: We describe the fabrication and use of arrays of TiO2 nanocones to yield high optical transmission into semiconductor photoelectrodes covered with high surface loadings of light-absorbing electrocatalysts. Covering over 50% of the surface of a light absorber with an array of high-refractive-index TiO2 nanocones imparted antireflective behavior ( 85% transmission of broadband light to the underlying Si, even when thick metal contacts or opaque catalyst coatings were deposited on areas of the light-facing surface that were not directly beneath a nanocone. Three-dimensional full-field electromagnetic simulations for the 400-1100 nm spectral range showed that incident broadband illumination couples to multiple waveguide modes in the TiO2 nanocones, reducing interactions of the light with the metal layer. A proof-of-concept experimental demonstration of light-driven water oxidation was performed using a p+n-Si photoanode decorated with an array of TiO2 nanocones additionally having a Ni catalyst layer electrodeposited onto the areas of the p+n-Si surface left uncovered by the TiO2 nanocones. This photoanode produced a light-limited photocurrent density of ∼28 mA cm-2 under 100 mW cm-2 of simulated air mass 1.5 illumination, equivalent to the photocurrent density expected for a bare planar Si surface even though 54% of the front surface of the Si was covered by an ∼70 nm thick Ni metal layer.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated whether low-cost, firm, zero-carbon electricity generation technologies enhance or displace the deployment of variable renewable electricity generation technology in a least cost, fully reliable, and deeply decarbonized electricity system.

Journal ArticleDOI
TL;DR: In this article, the tin oxide (SnOx) layer is formed by atomic layer deposition that limits surface recombination at n-Si/SnOx heterojunctions and produces ∼620 mV of photovoltage on planar nSi photoanodes.
Abstract: The efficiency of photoelectrodes towards fuel-forming reactions is strongly affected by surface-based charge recombination, charge-transfer losses, and parasitic light absorption by electrocatalysts. We report a protective tin oxide (SnOx) layer formed by atomic-layer deposition that limits surface recombination at n-Si/SnOx heterojunctions and produces ∼620 mV of photovoltage on planar n-Si photoanodes. The SnOx layer can be deposited conformally on high aspect-ratio three-dimensional structures such as Si microcone arrays. Atomic-level control of the SnOx thickness enabled highly conductive contacts to electrolytes, allowing the direct electrodeposition of NiFeOOH, CoOx, and IrOx electrocatalysts for photoelectrochemical water oxidation with minimal parasitic absorption losses. SnOx-coated n-Si microcone arrays coupled to electrodeposited catalysts exhibited photocurrent densities of ∼42 mA cm−2 and a photovoltage of ∼490 mV under 100 mW cm−2 of simulated solar illumination. The SnOx layer can be integrated with amorphous TiO2 to form a protective SnOx/TiO2 bilayer that exhibits the beneficial properties of both materials. Photoanodes coated with SnOx/TiO2 exhibited a similar photovoltage to that of SnOx-coated photoanodes, and showed >480 h of stable photocurrent for planar photoelectrodes and >140 h of stable photocurrent for n-Si microcone arrays under continuous simulated solar illumination in alkaline electrolytes.

Journal ArticleDOI
TL;DR: In this paper, the authors showed that adding Fe(CN)6]3− to 1.0 M KOH(aq) results in a self-healing process that extends the lifetime of an np+-Si(100) photoanode patterned with an array of Ni catalyst islands operated under simulated day/night cycles.
Abstract: Alkaline electrolytes impede the corrosion of Si photoanodes under positive potentials and/or illumination, due to the formation of a SiOx layer that etches 2–3 orders of magnitude more slowly than Si. Hence during water oxidation under illumination, pinholes in protection layers on Si photoanodes result in the local formation of a protective, stabilizing passive oxide on the Si surface. However, operation under natural diurnal insolation cycles additionally requires protection strategies that minimize the dark corrosive etching rate of Si at pinholes. We show herein that addition of [Fe(CN)6]3− to 1.0 M KOH(aq) results in a self-healing process that extends the lifetime to >280 h of an np+-Si(100) photoanode patterned with an array of Ni catalyst islands operated under simulated day/night cycles. The self-healing [Fe(CN)6]3− additive caused the exposed Si(100) surface to etch >180 times slower than the Si etch rate in 1.0 M KOH(aq) alone. No appreciable difference in etch rate or facet preference was observed between Si(100) and Si(111) surfaces in 1.0 M KOH(aq) with [Fe(CN)6]3−, indicating that the surface conformally oxidized before Si dissolved. The presence of [Fe(CN)6]3− minimally impacted the faradaic efficiency or overpotential of p+-Si/Ni electrodes for the oxygen-evolution reaction.

Journal ArticleDOI
TL;DR: In this paper, a cobalt-molybdenum (CoMo) thin-film electrode prepared by magnetron reactive sputtering was used for the reduction of dinitrogen to ammonium (NH4+) in acidic aqueous solutions.
Abstract: Electrocatalytic reduction of dinitrogen (N2) to ammonium (NH4+) in acidic aqueous solutions was investigated at ambient temperature and pressure using a cobalt–molybdenum (CoMo) thin-film electrode prepared by magnetron reactive sputtering. Increased concentrations of ammonium ions (NH4+) were consistently detected in the electrolyte using ion chromatography (IC) after constant-potential electrolysis at various potentials (≤−0.29 V vs. RHE). Using a newly developed analytical method based on ammonia derivatization, performing the experiments with 15N2-labelled gas led however to the detection of increased 14NH4+ concentrations instead of 15NH4+. X-ray photoelectron spectroscopic (XPS) analysis of the electrode surface revealed the presence of MoN and Mo–NHx species. Several contamination sources were identified that led to substantial increases in the concentration of ammonium ions, including 15NH3 impurities in 15N2 gas. The observed ammonium concentrations can be consistently ascribed to leaching of nitrogen (14N) impurities incorporated in the CoMo film during the sputtering process. Researchers in the field are therefore urged to adopt extended protocols to identify and eliminate sources of ammonia contamination and to very carefully monitor the ammonium concentrations in each experimental step.

Journal ArticleDOI
TL;DR: SECCM is shown to be an effective method to interrogate the nanoscale photoelectrochemical behavior of an interface, showing little spatial variance over scales exceeding the grain size of the CVD-grown 2D materials in this work.
Abstract: Two-dimensional (2D) materials may enable a general approach to the introduction of a dipole at a semiconductor surface as well as control over other properties of the double layer at a semiconductor/liquid interface. Vastly different properties can be found in the 2D materials currently studied due in part to the range of the distribution of density-of-states. In this work, the open-circuit voltage (Voc) of p-Si-H, p-Si/Gr (graphene), and p-Si/h-BN (hexagonal boron nitride) in contact with a series of one-electron outer-sphere redox couples was investigated by macroscale measurements as well as by scanning electrochemical cell microscopy (SECCM). The band gaps of Gr and h-BN (0-5.97 eV) encompass the wide range of band gaps for 2D materials, so these interfaces (p-Si/Gr and p-Si/h-BN) serve as useful references to understand the behavior of 2D materials more generally. The value of Voc shifted with respect to the effective potential of the contacting solution, with slopes (ΔVoc/ΔEEff) of -0.27 and -0.38 for p-Si/Gr and p-Si/h-BN, respectively, indicating that band bending at the p-Si/h-BN and p-Si/Gr interfaces responds at least partially to changes in the electrochemical potential of the contacting liquid electrolyte. Additionally, SECCM is shown to be an effective method to interrogate the nanoscale photoelectrochemical behavior of an interface, showing little spatial variance over scales exceeding the grain size of the CVD-grown 2D materials in this work. The measurements demonstrated that the polycrystalline nature of the 2D materials had little effect on the results and confirmed that the macroscale measurements reflected the junction behavior at the nanoscale.

Journal ArticleDOI
TL;DR: In this article, thin films of nickel oxide (NiOx), cobalt oxide (CoOx) and nickel-cobalt oxides (NiCoO) were sputtered onto n-Si(111) surfaces to produce a series of integrated, protected Si photoanodes that did not require deposition of a separate heterogeneous electrocatalyst for water oxidation.
Abstract: Thin films of nickel oxide (NiOx), cobalt oxide (CoOx) and nickel–cobalt oxide (NiCoOx) were sputtered onto n-Si(111) surfaces to produce a series of integrated, protected Si photoanodes that did not require deposition of a separate heterogeneous electrocatalyst for water oxidation The p-type transparent conductive oxides (p-TCOs) acted as multi-functional transparent, antireflective, electrically conductive, chemically stable coatings that also were active electrocatalysts for the oxidation of water to O2(g) Relative to the formal potential for water oxidation to O2, Eo′(O2/H2O), under simulated Air Mass (AM)15 illumination the p-TCO-coated n-Si(111) photoanodes produced mutually similar open-circuit potentials of −270 ± 20 mV, but different photocurrent densities at Eo′(O2/H2O), of 28 ± 03 mA cm−2 for NiOx, 18 ± 03 mA cm−2 for CoOx and 24 ± 05 mA cm−2 for NiCoOx The p-TCOs all provided protection from oxide growth for extended time periods, and produced stable photocurrent densities from n-Si in 10 M KOH(aq) (ACS grade) under potential control at Eo′(O2/H2O) for >400 h of continuous operation under 100 mW cm−2 of simulated AM15 illumination

Journal ArticleDOI
TL;DR: Inorganic phototropic growth using only spatially conformal illumination generated Se-Cd films that exhibited precise light-defined mesoscale morphologies including highly ordered, anisotropic, and periodic ridge and trench nanotextures over entire macroscopic substrates as discussed by the authors.
Abstract: Inorganic phototropic growth using only spatially conformal illumination generated Se–Cd films that exhibited precise light-defined mesoscale morphologies including highly ordered, anisotropic, and periodic ridge and trench nanotextures over entire macroscopic substrates Growth was accomplished via a light-induced electrochemical method using an optically and chemically isotropic solution, an unpatterned substrate, and unstructured, incoherent, low-intensity illumination in the absence of chemical directing agents or physical templates and masks The morphologies were defined by the illumination inputs: the nanotexture long axes aligned parallel to the optical E-field vector, and the feature sizes and periods scaled with the wavelength Optically based modeling of the growth closely reproduced the experimental results, confirming the film morphologies were fully determined by the light–matter interactions during growth Solution processing of the Se–Cd films resulted in stoichiometric, crystalline CdSe films that also exhibited ordered nanotextures, demonstrating that inorganic phototropic growth can effect tunable, template-free generation of ordered CdSe nanostructures over macroscopic length scales

Journal ArticleDOI
TL;DR: Transmission electron microscopy revealed the presence of dislocation networks along the basal plane of mechanically exfoliated 2D flakes, indicating that periodical basal plane defects related to disruptions in the van der Waals stacking of layers, such as perfect line dislocations and triangular extended stacking faults networks, introduce a surface reactivity landscape that leads to the emergence of patterned deposition.
Abstract: Atomic layer deposition (ALD) on mechanically exfoliated 2D layered materials spontaneously produces network patterns of metal oxide nanoparticles in triangular and linear deposits on the basal surface. The network patterns formed under a range of ALD conditions and were independent of the orientation of the substrate in the ALD reactor. The patterns were produced on MoS2 or HOPG when either tetrakis(dimethylamido)titanium or bis(ethylcyclopentadienyl)manganese were used as precursors, suggesting that the phenomenon is general for 2D materials. Transmission electron microscopy revealed the presence, prior to deposition, of dislocation networks along the basal plane of mechanically exfoliated 2D flakes, indicating that periodical basal plane defects related to disruptions in the van der Waals stacking of layers, such as perfect line dislocations and triangular extended stacking faults networks, introduce a surface reactivity landscape that leads to the emergence of patterned deposition.

Journal ArticleDOI
TL;DR: Spontaneous nanostructuring of opaque, electrodeposited CoP films, 40-120 nm in thickness, leads to transparent electrocatalyst films that exhibit up to 90% optical transmission in the visible spectrum, validate an optical model for transparent coP films as probed with spectroscopic ellipsometry.
Abstract: Earth-abundant catalysts for the hydrogen-evolution reaction require increased mass loadings, relative to Pt films, to achieve comparable activity and stability in acidic electrolytes. We report he...

Journal ArticleDOI
TL;DR: Promotion of fractal etching near etch masks that electrochemically and electronically isolated areas of the photoelectrode surface enabled the selective placement of highly branched structures at desired locations on an electrode surface.
Abstract: The genesis, propagation, and dimensions of fractal-etch patterns that form anodically on front- or back-illuminated n-Si(100) photoelectrodes in contact with 11.9 M NH4F (aqueous) have been invest...

Journal ArticleDOI
TL;DR: In this article, chemical functionalization of semiconductor surfaces can provide high-efficiency photoelectrochemical devices through molecular-level control of the energetics, surface dipole, surface electronic d
Abstract: Chemical functionalization of semiconductor surfaces can provide high-efficiency photoelectrochemical devices through molecular-level control of the energetics, surface dipole, surface electronic d

Journal ArticleDOI
TL;DR: Analysis of light absorption in simulated structures indicated that the history effect and asymmetric path dependence are a result of emergent nanophotonic processes at the growth interface that dynamically shape the optical field and direct morphological evolution of the photodeposit in a continuous feedback loop.
Abstract: We describe herein a path-dependent "history" effect wherein the film morphology generated in the second step of a two-step inorganic phototropic growth process depends on a preexisting structure that has been first grown under different optical stimulation conditions. Se-Te generated with static illumination exhibited a highly anisotropic lamellar morphology with a characteristic feature pitch proportional to the input wavelength. Growth using first a short wavelength of light, followed by growth using a longer wavelength, resulted in the second-stage morphology exhibiting termination of lamellae formed during the first growth step. The lamellar pitch at the end of the second growth step was larger than that effected in the first step. In contrast, use of the same input wavelengths but in the opposite order produced no change in the feature pitch but rather only linear feature extension. Analysis of light absorption in simulated structures, in tandem with the empirical data, indicated that the history effect and asymmetric path dependence are a result of emergent nanophotonic processes at the growth interface that dynamically shape the optical field and direct morphological evolution of the photodeposit in a continuous feedback loop.

Journal ArticleDOI
TL;DR: The data indicate that increases in randomness and spatial disorder of the dispersion of the initial nucleates produces increases in the fidelity and spatial order in the resulting phototropically grown electrodeposits.
Abstract: The role of nucleation was investigated during phototropic growth of Se–Te. Under low levels of mass deposition (mass equivalent of −3.75 mC cm−2 of charge passed) that produced small nucleate spacings, patterns in photoelectrochemically deposited Se–Te films converged at relatively earlier levels of mass deposition and ultimately exhibited higher pattern fidelity throughout pattern development as compared to pattern formation from larger initial nucleate spacings. Consistently, use of an applied striking potential during very early levels of mass deposition produced more spatially random dark-phase electrodeposited nucleates and led to phototropic Se–Te photoelectrodeposited films that exhibited improved pattern fidelity relative to depositions performed with no striking step. Collectively, the data indicate that increases in randomness and spatial disorder of the dispersion of the initial nucleates produces increases in the fidelity and spatial order in the resulting phototropically grown electrodeposits.

Patent
29 Sep 2020
TL;DR: In this paper, the pH of the anolyte and the pH level of the catholyte are held at a steady state pH level during operation of a solar fuels generator, but the steady-state pH level is different from the steady states pH of an anoxide and a cathoxide.
Abstract: A solar fuels generator includes an anolyte and a catholyte in contact with a separator. The separator is configured such that the pH of the anolyte and the pH of the catholyte are each held at a steady state pH level during operation of the solar fuels generator. The steady state pH level of the anolyte is different from the steady state pH level of the catholyte.

Patent
18 Jun 2020
TL;DR: In this article, stable, active non-precious metal oxide catalysts, such as transition metal antimonates (TMAs), for electrochemical reactions in harsh media conditions such as the chlorine evolution reaction (CER), are disclosed.
Abstract: Disclosed are stable, active non-precious metal oxide catalysts, such as transition metal antimonates (TMAs), for electrochemical reactions in harsh media conditions, such as the chlorine evolution reaction (CER). A disclosed electrocatalyst includes a metal oxide film containing a crystalline transition metal antimonite (TMA). The crystalline TMA may include NiSb2Ox, CoSb2Ox, or MnSb2Ox. The metal oxide film may be formed on a conductive substrate, for example, a substrate including an antimony-doped tin oxide (ATO) film, using an annealing process.