scispace - formally typeset
Search or ask a question

Showing papers by "Oliver L. Phillips published in 2004"


Journal ArticleDOI
08 Jan 2004-Nature
TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

7,089 citations


Journal ArticleDOI
TL;DR: In this article, the relative roles of species composition (wood specific gravity) and forest structure (basal area) in determining variation in aboveground biomass (AGB) of trees greater than 10cm diameter within Amazonia have been compared.
Abstract: Uncertainty in biomass estimates is one of the greatest limitations to models of carbon flux in tropical forests. Previous comparisons of field-based estimates of the aboveground biomass (AGB) of trees greater than 10cm diameter within Amazonia have been limited by the paucity of data for western Amazon forests, and the use of site-specific methods to estimate biomass from inventory data. In addition, the role of regional variation in stand-level wood specific gravity has not previously been considered. Using data from 56 mature forest plots across Amazonia, we consider the relative roles of species composition (wood specific gravity) and forest structure (basal area) in determining variation in AGB. Mean stand-level wood specific gravity, on a per stem basis, is 15.8% higher in forests in central and eastern, compared with northwestern Amazonia. This pattern is due to the higher diversity and abundance of taxa with high specific gravity values in central and eastern Amazonia, and the greater diversity and abundance of taxa with low specific gravity values in western Amazonia. For two estimates of AGB derived using different allometric equations, basal area explains 51.7% and 63.4%, and stand-level specific gravity 45.4% and 29.7%, of the total variation in AGB. The variation in specific gravity is important because it determines the regional scale, spatial pattern of AGB. When weighting by specific gravity is included, central and eastern Amazon forests have significantly higher AGB than stands in northwest or southwest Amazonia. The regional-scale pattern of species composition therefore defines a broad gradient of AGB across Amazonia.

754 citations


Journal ArticleDOI
TL;DR: In this article, the above-ground coarse wood carbon productivity for 104 forest plots in lowland New World humid tropical forests, using a consistent calculation methodology that incorporates corrections for spatial variations in tree-size distributions and wood density, and for census interval length.
Abstract: The net primary production of tropical forests and its partitioning between long-lived carbon pools (wood) and shorter-lived pools (leaves, fine roots) are of considerable importance in the global carbon cycle. However, these terms have only been studied at a handful of field sites, and with no consistent calculation methodology. Here we calculate above-ground coarse wood carbon productivity for 104 forest plots in lowland New World humid tropical forests, using a consistent calculation methodology that incorporates corrections for spatial variations in tree-size distributions and wood density, and for census interval length. Mean wood density is found to be lower in more productive forests. We estimate that above-ground coarse wood productivity varies by more than a factor of three (between 1.5 and 5.5 Mg C ha-1a-1) across the Neotropical plots, with a mean value of 3.1 Mg C ha-a-1. There appear to be no obvious relationships between wood productivity and rainfall, dry season length or sunshine, but there is some hint of increased productivity at lower temperatures. There is, however, also strong evidence for a positive relationship between wood productivity and soil fertility. Fertile soils tend to become more common towards the Andes and at slightly higher than average elevations, so the apparent temperature/productivity relationship is probably not a direct one. Coarse wood productivity accounts for only a fraction of overall tropical forest net primary productivity, but the available data indicate that it is approximately proportional to total above-ground productivity. We speculate that the large variation in wood productivity is unlikely to directly imply an equivalent variation in gross primary production. Instead a shifting balance in carbon allocation between respiration, wood carbon and fine root production seems the more likely explanation. © 2004 Blackwell Publishing Ltd.

490 citations


Journal ArticleDOI
TL;DR: The results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional-scale carbon sink in old-growth Amazonian forests during the previous two decades.
Abstract: A previous study by Phillips et al of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink However, these results generated a vigorous debate about sampling and methodological issues Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data We find that across 59 sites, the above-ground dry biomass in trees that are more than 10 cm in diameter (AGB) has increased since plot establishment by 122 +/- 043 Mg per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), or 098 +/- 038 Mg ha(-1) yr(-1) if individual plot values are weighted by the number of hectare years of monitoring This significant increase is neither confounded by spatial or temporal variation in wood specific gravity, nor dependent on the allometric equation used to estimate AGB The conclusion is also robust to uncertainty about diameter measurements for problematic trees: for 34 plots in western Amazon forests a significant increase in AGB is found even with a conservative assumption of zero growth for all trees where diameter measurements were made using optical methods and/or growth rates needed to be estimated following fieldwork Overall, our results suggest a slightly greater rate of net stand-level change than was reported by Phillips et al Considering the spatial and temporal scale of sampling and associated studies showing increases in forest growth and stem turnover, the results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional-scale carbon sink in old-growth Amazonian forests during the previous two decades

469 citations


Journal ArticleDOI
TL;DR: In this paper, the authors characterize regional-scale patterns of "tree turnover" (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years, and assess whether concerted changes in turnover are occurring and if so whether they are general throughout the Amazon or restricted to one region or environmental zone.
Abstract: Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests.

426 citations


Journal ArticleDOI
TL;DR: Large long-term increases inStand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics.
Abstract: Several widespread changes in the ecology of old-growth tropical forests have recently been documented for the late twentieth century, in particular an increase in stem turnover (pan-tropical), and an increase in above-ground biomass (neotropical). Whether these changes are synchronous and whether changes in growth are also occurring is not known. We analysed stand-level changes within 50 long-term monitoring plots from across South America spanning 1971-2002. We show that: (i) basal area (BA: sum of the cross-sectional areas of all trees in a plot) increased significantly over time (by 0.10 +/- 0.04 m2 ha(-1) yr(-1), mean +/- 95% CI); as did both (ii) stand-level BA growth rates (sum of the increments of BA of surviving trees and BA of new trees that recruited into a plot); and (iii) stand-level BA mortality rates (sum of the cross-sectional areas of all trees that died in a plot). Similar patterns were observed on a per-stem basis: (i) stem density (number of stems per hectare; 1 hectare is 10(4) m2) increased significantly over time (0.94 +/- 0.63 stems ha(-1) yr(-1)); as did both (ii) stem recruitment rates; and (iii) stem mortality rates. In relative terms, the pools of BA and stem density increased by 0.38 +/- 0.15% and 0.18 +/- 0.12% yr(-1), respectively. The fluxes into and out of these pools-stand-level BA growth, stand-level BA mortality, stem recruitment and stem mortality rates-increased, in relative terms, by an order of magnitude more. The gain terms (BA growth, stem recruitment) consistently exceeded the loss terms (BA loss, stem mortality) throughout the period, suggesting that whatever process is driving these changes was already acting before the plot network was established. Large long-term increases in stand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics. Continent-wide changes in incoming solar radiation, and increases in atmospheric concentrations of CO2 and air temperatures may have increased resource supply over recent decades, thus causing accelerated growth and increased dynamism across the world's largest tract of tropical forest.

313 citations


Journal ArticleDOI
TL;DR: Ten potential widespread drivers of environmental change were identified and each is expected to leave a unique 'fingerprint' in tropical forests, as drivers directly force different processes, have different distributions in space and time and may affect some forests more than others.
Abstract: Recent observations of widespread changes in mature tropical forests such as increasing tree growth, recruitment and mortality rates and increasing above-ground biomass suggest that 'global change' agents may be causing predictable changes in tropical forests. However, consensus over both the robustness of these changes and the environmental drivers that may be causing them is yet to emerge. This paper focuses on the second part of this debate. We review (i) the evidence that the physical, chemical and biological environment that tropical trees grow in has been altered over recent decades across large areas of the tropics, and (ii) the theoretical, experimental and observational evidence regarding the most likely effects of each of these changes on tropical forests. Ten potential widespread drivers of environmental change were identified: temperature, precipitation, solar radiation, climatic extremes (including El Nino-Southern Oscillation events), atmospheric CO2 concentrations, nutrient deposition, O3/acid depositions, hunting, land-use change and increasing liana numbers. We note that each of these environmental changes is expected to leave a unique 'fingerprint' in tropical forests, as drivers directly force different processes, have different distributions in space and time and may affect some forests more than others (e.g. depending on soil fertility). Thus, in the third part of the paper we present testable a priori predictions of forest responses to assist ecologists in attributing particular changes in forests to particular causes across multiple datasets. Finally, we discuss how these drivers may change in the future and the possible consequences for tropical forests.

248 citations


Journal ArticleDOI
TL;DR: In this article, the authors quantify the census interval effect for tropical forest trees, develop correction methods and re-assess some previously published conclusions about forest dynamics, and show that the pan-tropical increase in stem turnover rates over the late 20th century cannot be attributed to combining data with differing census interval.
Abstract: Summary 1 Mathematical proofs show that rate estimates, for example of mortality and recruitment, will decrease with increasing census interval when obtained from censuses of non-homogeneous populations. This census interval effect could be confounding or perhaps even driving conclusions from comparative studies involving such rate estimates. 2 We quantify this artefact for tropical forest trees, develop correction methods and re-assess some previously published conclusions about forest dynamics. 3 Mortality rates of > 50 species at each of seven sites in Africa, Latin America, Asia and Australia were used as subpopulations to simulate stand-level mortality rates in a heterogeneous population when census intervals varied: all sites showed decreasing stand mortality rates with increasing census interval length. 4 Stand-level mortality rates from 14 multicensus long-term forest plots from Africa, Latin America, Asia and Australia also showed that, on average, mortality rates decreased with increasing census interval length. 5 Mortality, recruitment or turnover rates with differing census interval lengths can be compared using the mean rate of decline from the 14 long-term plots to standardize estimates to a common census length using λ corr = λ × t 0.08 , where λ is the rate and t is time between censuses in years. This simple general correction should reduce the bias associated with census interval variation, where it is unavoidable. 6 Re-analysis of published results shows that the pan-tropical increase in stem turnover rates over the late 20th century cannot be attributed to combining data with differing census intervals. In addition, after correction, Old World tropical forests do not have significantly

185 citations


Journal ArticleDOI
TL;DR: A personal perspective on the highlights of the Theme Issue 'Tropical forests and global atmospheric change' highlights the key findings on the contemporary rate of climatic change in the tropics, the evidence-gained from field studies-of large-scale and rapidchange in the dynamics and biomass of old-growth forests, and evidence of how climate change and fragmentation can interact to increase the vulnerability of plants and animals to fires.
Abstract: We present a personal perspective on the highlights of the Theme Issue 'Tropical forests and global atmospheric change'. We highlight the key findings on the contemporary rate of climatic change in the tropics, the evidence-gained from field studies-of large-scale and rapid change in the dynamics and biomass of old-growth forests, and evidence of how climate change and fragmentation can interact to increase the vulnerability of plants and animals to fires. A range of opinions exists concerning the possible cause of these observed changes, but examination of the spatial 'fingerprint' of observed change may help to identify the driving mechanism(s). Studies of changes in tropical forest regions since the last glacial maximum show the sensitivity of species composition and ecology to atmospheric changes. Model studies of change in forest vegetation highlight the potential importance of temperature or drought thresholds that could lead to substantial forest decline in the near future. During the coming century, the Earth's remaining tropical forests face the combined pressures of direct human impacts and a climatic and atmospheric situation not experienced for at least 20 million years. Understanding and monitoring of their response to this atmospheric change are essential if we are to maximize their conservation options.

162 citations


Journal ArticleDOI
TL;DR: In this article, the impacts of expected global climate change on the potential and realized distributions of a representative sample of 69 individual Angiosperm species in Amazonia were simulated from 1990 to 2095.
Abstract: Aim To model long-term trends in plant species distributions in response to predicted changes in global climate. Location Amazonia. Methods The impacts of expected global climate change on the potential and realized distributions of a representative sample of 69 individual Angiosperm species in Amazonia were simulated from 1990 to 2095. The climate trend followed the HADCM2GSa1 scenario, which assumes an annual 1% increase of atmospheric CO 2 content with effects mitigated by sulphate forcing. Potential distributions of species in one-degree grid cells were modelled using a suitability index and rectilinear envelope based on bioclimate variables. Realized distributions were additionally limited by spatial contiguity with, and proximity to, known record sites. A size-structured population model was simulated for each cell in the realized distributions to allow for lags in response to climate change, but dispersal was not included. Results In the resulting simulations, 43% of all species became non-viable by 2095 because their potential distributions had changed drastically, but there was little change in the realized distributions of most species, owing to delays in population responses. Widely distributed species with high tolerance to environmental variation exhibited the least response to climate change, and species with narrow ranges and short generation times the greatest. Climate changed most in north-east Amazonia while the best remaining conditions for lowland moist forest species were in western Amazonia. Main conclusions To maintain the greatest resilience of Amazonian biodiversity to climate change as modelled by HADCM2GSa1, highest priority should be given to strengthening and extending protected areas in western Amazonia that encompass lowland and montane forests.

150 citations


Journal ArticleDOI
TL;DR: In this article, a bottom-up approach for estimating canopy-scale fluxes of isoprene was developed for estimating the emission capacity of unmeasured taxa using a taxonomic approach.
Abstract: As part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), we have developed a bottom-up approach for estimating canopy-scale fluxes of isoprene. Estimating isoprene fluxes for a given forest ecosystem requires knowledge of foliar biomass, segregated by species, and the isoprene emission characteristics of the individual tree species comprising the forest. In this study, approximately 38% of 125 tree species examined at six sites in the Brazilian Amazon emitted isoprene. Given logistical difficulties and extremely high species diversity, it was possible to screen only a small percentage of tree species, and we propose a protocol for estimating the emission capacity of unmeasured taxa using a taxonomic approach, in which we assign to an unmeasured genus a value based on the percentage of genera within its plant family which have been shown to emit isoprene. Combining this information with data obtained from 14 tree censuses at four Neotropical forest sites, we have estimated the percentage of isoprene-emitting biomass at each site. The relative contribution of each genus of tree is estimated as the basal area of all trees of that genus divided by the total basal area of the plot. Using this technique, the percentage of isoprene-emitting biomass varied from 20% to 42% (mean 5 31%; SD 5 8%). Responses of isoprene emission to varying light and temperature, measured on a sun- adapted leaf of mango (Mangifera indica L.), suggest that existing algorithms developed for temperate species are adequate for tropical species as well. Incorporating these algorithms, estimates of isoprene-emitting biomass, isoprene emission capacity, and site foliar biomass into a canopy flux model, canopy-scale fluxes of isoprene were predicted and compared with the above-canopy fluxes measured at two sites. Our bottom-up approach overestimates fluxes by about 50%, but variations in measured fluxes between the two sites are largely explained by observed variation in the amount of isoprene- emitting biomass.

Journal ArticleDOI
01 Jul 2004-Nature
TL;DR: Thomas et al. as mentioned in this paper confirmed their original conclusion that climate change represents a major threat to terrestrial species, in the light of three questions raised by Thuiller, Buckley and Roughgarden.
Abstract: Thomas et al. reply — We reconsider our estimates of climate-related extinction1 in the light of three questions raised by Thuiller .2, Buckley and Roughgarden 3 and Harte .4. We are able to confirm our original conclusion that climate change represents a major threat to terrestrial species1.


01 Jan 2004
TL;DR: In this paper, the authors quantify the census interval effect for tropical forest trees, develop correction methods and re-assess some previously published conclusions about forest dynamics, including mortality and recruitment.
Abstract: Summary 1 Mathematical proofs show that rate estimates, for example of mortality and recruitment, will decrease with increasing census interval when obtained from censuses of non-homogeneous populations. This census interval effect could be confounding or perhaps even driving conclusions from comparative studies involving such rate estimates. 2 We quantify this artefact for tropical forest trees, develop correction methods and re-assess some previously published conclusions about forest dynamics. 3 Mortality rates of > 50 species at each of seven sites in Africa, Latin America, Asia and Australia were used as subpopulations to simulate stand-level mortality rates in a heterogeneous population when census intervals varied: all sites showed decreasing stand mortality rates with increasing census interval length. 4 Stand-level mortality rates from 14 multicensus long-term forest plots from Africa, Latin America, Asia and Australia also showed that, on average, mortality rates decreased with increasing census interval length. 5 Mortality, recruitment or turnover rates with differing census interval lengths can be compared using the mean rate of decline from the 14 long-term plots to standardize estimates to a common census length using X^••= '^ ^ ^°°^ where X is the rate and t is time between censuses in years. This simple general correction should reduce the bias associated with census interval variation, where it is unavoidable. 6 Re-analysis of published results shows that the pan-tropical increase in stem turnover rates over the late 20th century cannot be attributed to combining data with differing census intervals. In addition, after correction. Old World tropical forests do not have significantly