scispace - formally typeset
Search or ask a question

Showing papers by "Otto C. Boerman published in 2020"


Journal ArticleDOI
TL;DR: Designing radioactive bisphosphonate-functionalized platinum ( 195m Pt-BP) complexes to confirm preferential accumulation of these Pt-based drugs in metabolically active bone revealed that release of Pt from Pt BP complexes increased with decreasing pH, and laser ablation-ICP-MS imaging of proximal tibia sections confirmed that195m Pt BP co-localized with calcium in the trabeculae of mice tibia.
Abstract: Platinum-based chemotherapeutics exhibit excellent antitumor properties. However, these drugs cause severe side effects including toxicity, drug resistance, and lack of tumor selectivity. Tumor-targeted drug delivery has demonstrated great potential to overcome these drawbacks. Herein, we aimed to design radioactive bisphosphonate-functionalized platinum (195mPt-BP) complexes to confirm preferential accumulation of these Pt-based drugs in metabolically active bone. In vitro NMR studies revealed that release of Pt from Pt BP complexes increased with decreasing pH. Upon systemic administration to mice, Pt-BP exhibited a 4.5-fold higher affinity to bone compared to platinum complexes lacking the bone-seeking bisphosphonate moiety. These Pt-BP complexes formed less Pt-DNA adducts compared to bisphosphonate-free platinum complexes, indicating that in vivo release of Pt from Pt-BP complexes proceeded relatively slow. Subsequently, radioactive 195mPt-BP complexes were synthesized using 195mPt(NO3)2(en) as precursor and injected intravenously into mice. Specific accumulation of 195mPt-BP was observed at skeletal sites with high metabolic activity using micro-SPECT/CT imaging. Furthermore, laser ablation-ICP-MS imaging of proximal tibia sections confirmed that 195mPt BP co-localized with calcium in the trabeculae of mice tibia.

18 citations


Journal ArticleDOI
TL;DR: 68Ga-RGD PET/CT of αvβ3 integrin expression in OSCC patients is feasible with adequate tumour-to-background ratios and will provide more insight in angiogenesis as a hallmark of the head and neck squamous cell carcinomas’ tumour microenvironment.
Abstract: Angiogenesis plays an important role in the growth and metastatic spread of solid tumours and is characterised by the expression of integrins on the cell surface of endothelial cells. Radiolabelled RGD peptides specifically target angiogenesis-related αvβ3 integrins, expressed on the activated endothelial cells of sprouting blood vessels. Here, we validated the feasibility of 68Ga[Ga]-DOTA-E-[c(RGDfK)]2 (68Ga-RGD) PET/CT to visualise angiogenesis in patients with oral squamous cell carcinoma (OSCC). Ten patients with OSCC and scheduled for surgical resection including elective neck dissection received an intravenously administration of 68Ga-RGD (42 ± 8 μg; 214 ± 9 MBq). All patients subsequently underwent dynamic (n = 5) or static PET/CT imaging (n = 5) for 60 min or for 4 min/bed position at 30, 60 and 90 min after injection, respectively. Quantitative tracer uptake in tumour lesions was expressed as standardised uptake values (SUV). Additionally, tumour tissue was immunohistochemically stained for αvβ3 integrin to assess the expression pattern. 68Ga-RGD tumour accumulation was observed in all patients. At 60 min post injection, tumour SUVmax ranged between 4.0 and 12.7. Tracer accumulation in tumour tissue plateaued at 10 min after injection. Uptake in background tissue did not change over time, resulting in tumour-to-muscle tissue of 6.4 ± 0.7 at 60 min post injection. 68Ga-RGD PET/CT of αvβ3 integrin expression in OSCC patients is feasible with adequate tumour-to-background ratios. It will provide more insight in angiogenesis as a hallmark of the head and neck squamous cell carcinomas’ tumour microenvironment. https://eudract.ema.europa.eu no. 2015-000917-31

16 citations


Journal ArticleDOI
17 Apr 2020-Cancers
TL;DR: The results demonstrate the feasibility of this tracer for multimodal image-guided surgery and help to bridge the gap between preclinical research and clinical application of new agents for radioactive, near infrared fluorescence or multi-modal imaging studies.
Abstract: Image-guided surgery can aid in achieving complete tumor resection. The development and assessment of tumor-targeted imaging probes for near-infrared fluorescence image-guided surgery relies mainly on preclinical models, but the translation to clinical use remains challenging. In the current study, we introduce and evaluate the application of a dual-labelled tumor-targeting antibody for ex vivo incubation of freshly resected human tumor specimens and assessed the tumor-to-adjacent tissue ratio of the detectable signals. Immediately after surgical resection, peritoneal tumors of colorectal origin were placed in cold medium. Subsequently, tumors were incubated with 111In-DOTA-hMN-14-IRDye800CW, an anti-carcinoembryonic antigen (CEA) antibody with a fluorescent and radioactive label. Tumors were then washed, fixed, and analyzed for the presence and location of tumor cells, CEA expression, fluorescence, and radioactivity. Twenty-six of 29 tumor samples obtained from 10 patients contained malignant cells. Overall, fluorescence intensity was higher in tumor areas compared to adjacent non-tumor tissue parts (p < 0.001). The average fluorescence tumor-to-background ratio was 11.8 ± 9.1:1. A similar ratio was found in the autoradiographic analyses. Incubation with a non-specific control antibody confirmed that tumor targeting of our tracer was CEA-specific. Our results demonstrate the feasibility of this tracer for multimodal image-guided surgery. Furthermore, this ex vivo incubation method may help to bridge the gap between preclinical research and clinical application of new agents for radioactive, near infrared fluorescence or multimodal imaging studies.

10 citations


Journal ArticleDOI
TL;DR: Increased uptake was showed in AVMs with angiogenic activity, compared with surrounding tissue without angiogens activity, suggesting that 68Ga-RGD PET/CT imaging can be used as a tool to quantitatively determine angiogenesis in AVM.
Abstract: Arteriovenous malformations (AVMs) have an inherent capacity to form new blood vessels, resulting in excessive lesion growth, and this process is further triggered by the release of angiogenic factors. 68Ga-labeled arginine-glycine-aspartate tripeptide sequence (RGD) PET/CT imaging may provide insight into the angiogenic status and treatment response of AVMs. This clinical feasibility study was performed to demonstrate that 68Ga-RGD PET/CT imaging can be used to quantitatively assess angiogenesis in peripheral AVMs. Methods: Ten patients with a peripheral AVM (mean age, 40 y; 4 men and 6 women) and scheduled for endovascular embolization treatment were prospectively included. All patients underwent 68Ga-RGD PET/CT imaging 60 min after injection (mean dose, 207 ± 5 MBq). Uptake in the AVM, blood pool, and muscle was quantified as SUVmax and SUVpeak, and a descriptive analysis of the PET/CT images was performed. Furthermore, immunohistochemical analysis was performed on surgical biopsy sections of peripheral AVMs to investigate the expression pattern of integrin αvβ3. Results:68Ga-RGD PET/CT imaging showed enhanced uptake in all AVM lesions (mean SUVmax, 3.0 ± 1.1; mean SUVpeak, 2.2 ± 0.9). Lesion-to-blood and lesion-to-muscle ratios were 3.5 ± 2.2 and 4.6 ± 2.8, respectively. Uptake in blood and muscle was significantly higher in AVMs than in background tissue (P = 0.0006 and P = 0.0014, respectively). Initial observations included uptake in multifocal AVM lesions and enhanced uptake in intraosseous components in those AVM cases affecting bone integrity. Immunohistochemical analysis revealed cytoplasmatic and membranous integrin αvβ3 expression in the endothelial cells of AVMs. Conclusion: This feasibility study showed increased uptake in AVMs with angiogenic activity, compared with surrounding tissue without angiogenic activity, suggesting that 68Ga-RGD PET/CT imaging can be used as a tool to quantitatively determine angiogenesis in AVMs. Further studies will be conducted to explore the potential of 68Ga-RGD PET/CT imaging for guiding current treatment decisions and for assessing response to antiangiogenic treatment.

7 citations


Journal ArticleDOI
TL;DR: FU imaging with 111In-girentuximab-SPECT is feasible after ccRCC cryoablation and may contribute to early detection of residual or recurrent disease.
Abstract: Detection of residual or recurrent vital renal tumor on follow-up (FU) cross-sectional imaging after ablative therapy is challenging. The specific and high expression levels of carbonic anhydrase IX (CAIX) in clear cell renal cell carcinoma (ccRCC) makes it a suitable target for imaging using radiolabeled anti-CAIX antibody girentuximab. The objective of this study was to evaluate the feasibility of targeted FU imaging 1 month after cryoablation of ccRCC using single photon emission computed tomography (SPECT) after 111In-labeled girentuximab administration. In this prospective study 16 patients underwent 111In-girentuximab-SPECT before MR-guided renal cryoablation between February 2015 and September 2018. In case of tumor targeting 111In-girentuximab-SPECT was repeated 1 month following MR-guided cryoablation. Presence of residual or recurrent vital tumor was assessed on contrast-enhanced cross-sectional imaging during further FU. The standard FU imaging protocol consisted of MRI/CT scans at 1, 3, 6, 12, and 18 months and annually thereafter. A total of 10 (63%) patients showed positive tumor targeting on 111In-girentuximab-SPECT before cryoablation and 9 ( 56%) were eligible to undergo FU SPECT. Of the 9 111In-girentuximab-SPECT FU scans, 8 (89%) were considered negative. One (11%) scan showed uptake suggestive for residual vital tumor. Six months after treatment, FU CT showed contrast enhancement suggestive for residual/recurrent disease in the ablated zone at the site of the 111In-girentuximab uptake after treatment. During a mean FU of 21 months (range 1–33) no other cases with residual/recurrent disease were detected. FU imaging with 111In-girentuximab-SPECT is feasible after ccRCC cryoablation and may contribute to early detection of residual or recurrent disease.

5 citations


Journal Article
TL;DR: IL8 was easily and relatively quickly prepared and was shown to be suitable for visualization of OM lesions in peripheral bones detecting 70% compared to a 100% sensitivity of [18F]FDG PET/CT.
Abstract: Osteomyelitis (OM) is an important cause of morbidity and sometimes mortality in children and adults. Long-term complications can be reduced when treatment is initiated in an early phase. The diagnostic gold standard is microbial examination of a biopsy and current non-invasive imaging methods are not always optimal. [111In]-leukocyte scintigraphy is recommended for peripheral OM, but is time-consuming and not recommended in children. [18F]FDG PET/CT is recommended for vertebral OM in adults, but has the disadvantage of false positive findings and a relatively high radiation exposure; the latter is a problem in children. [99mTc]-based tracers are consequently preferred in children. We, therefore, aimed to find a [99mTc]-marked tracer with high specificity and sensitivity for early detection of OM. Suppurating inflammatory lesions like OM caused by Staphylococcus aureus (S. aureus) will attract large numbers of neutrophils and macrophages. A preliminary study has shown that [99m Tc]-labelled IL8 may be a possible candidate for imaging of peripheral OM. We investigated [99mTc]IL8 scintigraphy in a juvenile pig model of peripheral OM and compared it with [18F]FDG PET/CT. The pigs were experimentally inoculated with S. aureus to induce OM and scanned one week later. We also examined leukocyte count, serum CRP and IL8, as well as performed histopathological and microbiological investigations. [ 99m Tc]IL8 was easily and relatively quickly prepared and was shown to be suitable for visualization of OM lesions in peripheral bones detecting 70% compared to a 100% sensitivity of [18F]FDG PET/CT. [ 99m Tc]IL8 is a promising candidate for detection of OM in peripheral bones in children.

4 citations


Journal ArticleDOI
TL;DR: Although aimed at similar experimental conditions, the use of a freshly thawed cell line and new mice could have caused heterogeneity between the two experiments, which could explain the slight differences in tumor uptake, blood kinetics, and uptake in other organs.
Abstract: – DFOcyclo* is derived from DFO and not from DFO*. In DFO*, the trihydroxamate DFO is elongated with an extra hydroxamate group, exactly the same as present in DFO. In DFOcyclo*, the DFO is elongated with a cyclic hydroxamate group having a different linker length. – During the manuscript review process, DFO*-NCS was made commercially available at ABX (catalogue number 7272). Therefore, the following statement in the introduction “However, in the absence of an improved, clinically applicable chelator, there is room for more efficient [Zr]Zr chelators” is no more correct. – The stability assays were performed in PBS at pH 7.4. – The amounts of DFO and EDTA used for the challenge experiments were calculated based on the amount of chelators. – DFOcyclo* was used as a racemate in the experiments reported in the article. – The results depicted in Figs. 4c and 5a are based on two different sets of experiments. Initially the in vivo stability of [Zr]Zr-DFOcyclo*-trastuzumab was compared with [Zr]Zr-DFO-trastuzumab, of which the results are depicted in Fig. 4c. Once we observed an improved in vivo stability of [Zr]Zr-DFOcyclo*trastuzumab, a subsequent in vivo study was performed to investigate its stability compared with [Zr]Zr-DFO*-trastuzumab as well (Fig. 5). Although aimed at similar experimental conditions, the use of a freshly thawed cell line and new mice could have caused heterogeneity between the two experiments (e.g., increased tumor growth rates which result in different interstitial pressures that could affect the %ID/g), which could explain the slight differences in tumor uptake, blood kinetics, and uptake in other organs. This article is part of the Topical Collection on Radiopharmacy

3 citations


Journal ArticleDOI
TL;DR: The results indicate that glucose and pyruvate metabolism in the prostate cancer cell models differs from that in other tumor models and that [18F]FDG‐PET can serve as a valuable complementary tool in dDNP studies of aggressive prostate cancer with [1‐13C]pyruvates.
Abstract: Reprogramming of energy metabolism in the development of prostate cancer can be exploited for a better diagnosis and treatment of the disease. The goal of this study was to determine whether differences in glucose and pyruvate metabolism of human prostate cancer cells with dissimilar aggressivenesses can be detected using hyperpolarized [1-13 C]pyruvate MRS and [18 F]FDG-PET imaging, and to evaluate whether these measures correlate. For this purpose, we compared murine xenografts of human prostate cancer LNCaP cells with those of more aggressive PC3 cells. [1-13 C]pyruvate was hyperpolarized by dissolution dynamic nuclear polarization (dDNP) and [1-13 C]pyruvate to lactate conversion was followed by 13 C MRS. Subsequently [18 F]FDG uptake was investigated by static and dynamic PET measurements. Standard uptake values (SUVs) for [18 F]FDG were significantly higher for xenografts of PC3 compared with those of LNCaP. However, we did not observe a difference in the average apparent rate constant kpl of 13 C label exchange from pyruvate to lactate between the tumor variants. A significant negative correlation was found between SUVs from [18 F]FDG PET measurements and kpl values for the xenografts of both tumor types. The kpl rate constant may be influenced by various factors, and studies with a range of prostate cancer cells in suspension suggest that LDH inhibition by pyruvate may be one of these. Our results indicate that glucose and pyruvate metabolism in the prostate cancer cell models differs from that in other tumor models and that [18 F]FDG-PET can serve as a valuable complementary tool in dDNP studies of aggressive prostate cancer with [1-13 C]pyruvate.

3 citations