scispace - formally typeset
Search or ask a question

Showing papers by "Paul O. Wennberg published in 2022"


Posted ContentDOI
TL;DR: In this article , a comparison of fast-response instruments installed onboard the NASA DC-8 aircraft that measured nitrogen oxides (NO and NO2), nitrous acid (HONO), total reactive odd nitrogen (measured both as the total (NOy) and from the sum of individually measured species (SNOy)) and carbon monoxide (CO) in the troposphere during the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign is presented.
Abstract: Abstract. We present a comparison of fast-response instruments installed onboard the NASA DC-8 aircraft that measured nitrogen oxides (NO and NO2), nitrous acid (HONO), total reactive odd nitrogen (measured both as the total (NOy) and from the sum of individually measured species (SNOy)) and carbon monoxide (CO) in the troposphere during the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. By targeting smoke from summertime wildfires, prescribed fires and agricultural burns across the continental United States, FIREX-AQ provided a unique opportunity to investigate measurement accuracy in concentrated plumes where hundreds of species coexist. Here, we compare NO measurements by chemiluminescence (CL) and laser induced fluorescence (LIF); NO2 measurements by CL, LIF and cavity enhanced spectroscopy (CES); HONO measurements by CES and iodide-adduct chemical ionization mass spectrometry (CIMS); and CO measurements by tunable diode laser absorption spectrometry (TDLAS) and integrated cavity output spectroscopy (ICOS). Additionally, total NOy measurements using the CL instrument were compared with SNOy (= NO + NO2 + HONO + nitric acid (HNO3) + acyl peroxy nitrates (APNs) + submicron particulate nitrate (pNO3)). The aircraft instrument intercomparisons demonstrate the following: 1) NO measurements by CL and LIF agreed well within instrument uncertainties, but with potentially reduced time response for the CL instrument; 2) NO2 measurements by LIF and CES agreed well within instrument uncertainties, but CL NO2 was on average 10 % higher; 3) CES and CIMS HONO measurements were highly correlated in each fire plume transect, but the correlation slope of CES vs. CIMS for all 1 Hz data during FIREX-AQ was 1.8, which we attribute to a reduction in the CIMS sensitivity to HONO in high temperature environments; 4) NOy budget closure was demonstrated for all flights within the combined instrument uncertainties of 25 %. However, we used a fluid dynamic flow model to estimate that average pNO3 sampling fraction through the NOy inlet in smoke was variable from one flight to another and ranged between 0.36 and 0.99, meaning that approximately 0–24 % on average of the total measured NOy in smoke may have been unaccounted for and may be due to unmeasured species such as organic nitrates; 5) CO measurements by ICOS and TDLAS agreed well within combined instrument uncertainties, but with a systematic offset that averaged 2.87 ppbv; and 6) integrating smoke plumes followed by fitting the integrated values of each plume improved the correlation between independent measurements.

15 citations


Journal ArticleDOI
TL;DR: O'Dell et al. as discussed by the authors used the version 9 (v9) Atmospheric Carbon Observations from Space (ACOS) Level 2 Full Physics (L2FP) retrieval algorithm to derive estimates of carbon dioxide dry air mole fraction (XCO2) from the TANSO-FTS measurements collected over its first 11 years of operation.
Abstract: Abstract. The Thermal And Near infrared Sensor for carbon Observation – Fourier Transform Spectrometer (TANSO-FTS) on the Japanese Greenhouse gases Observing SATellite (GOSAT) has been returning data since April 2009. The version 9 (v9) Atmospheric Carbon Observations from Space (ACOS) Level 2 Full Physics (L2FP) retrieval algorithm (Kiel et al., 2019) was used to derive estimates of carbon dioxide (CO2) dry air mole fraction (XCO2) from the TANSO-FTS measurements collected over its first 11 years of operation. The bias correction and quality filtering of the L2FP XCO2 product were evaluated using estimates derived from the Total Carbon Column Observing Network (TCCON) as well as values simulated from a suite of global atmospheric inversion systems (models) which do not assimilate satellite-derived CO2. In addition, the v9 ACOS GOSAT XCO2 results were compared with collocated XCO2 estimates derived from NASA's Orbiting Carbon Observatory-2 (OCO-2), using the version 10 (v10) ACOS L2FP algorithm. These tests indicate that the v9 ACOS GOSAT XCO2 product has improved throughput, scatter, and bias, when compared to the earlier v7.3 ACOS GOSAT product, which extended through mid 2016. Of the 37 million soundings collected by GOSAT through June 2020, approximately 20 % were selected for processing by the v9 L2FP algorithm after screening for clouds and other artifacts. After post-processing, 5.4 % of the soundings (2×106 out of 37×106) were assigned a “good” XCO2 quality flag, as compared to 3.9 % in v7.3 (<1 ×106 out of 24×106). After quality filtering and bias correction, the differences in XCO2 between ACOS GOSAT v9 and both TCCON and models have a scatter (1σ) of approximately 1 ppm for ocean-glint observations and 1 to 1.5 ppm for land observations. Global mean biases against TCCON and models are less than approximately 0.2 ppm. Seasonal mean biases relative to the v10 OCO-2 XCO2 product are of the order of 0.1 ppm for observations over land. However, for ocean-glint observations, seasonal mean biases relative to OCO-2 range from 0.2 to 0.6 ppm, with substantial variation in time and latitude. The ACOS GOSAT v9 XCO2 data are available on the NASA Goddard Earth Science Data and Information Services Center (GES-DISC) in both the per-orbit full format (https://doi.org/10.5067/OSGTIL9OV0PN, OCO-2 Science Team et al., 2019b) and in the per-day lite format (https://doi.org/10.5067/VWSABTO7ZII4, OCO-2 Science Team et al., 2019a). In addition, a new set of monthly super-lite files, containing only the most essential variables for each satellite observation, has been generated to provide entry level users with a light-weight satellite product for initial exploration (CaltechDATA, https://doi.org/10.22002/D1.2178, Eldering, 2021). The v9 ACOS Data User's Guide (DUG) describes best-use practices for the GOSAT data (O'Dell et al., 2020). The GOSAT v9 data set should be especially useful for studies of carbon cycle phenomena that span a full decade or more and may serve as a useful complement to the shorter OCO-2 v10 data set, which begins in September 2014.

14 citations


Journal ArticleDOI
27 May 2022-Science
TL;DR: For example, the authors showed that RO2 + OH reactions at atmospheric conditions lead to widespread levels of the previously omitted strong oxidizing agent ROOOH, which is known to be a strong oxidant used in organic synthesis.
Abstract: Organic hydrotrioxides (ROOOH) are known to be strong oxidants used in organic synthesis. Previously, it has been speculated that they are formed in the atmosphere through the gas-phase reaction of organic peroxy radicals (RO2) with hydroxyl radicals (OH). Here, we report direct observation of ROOOH formation from several atmospherically relevant RO2 radicals. Kinetic analysis confirmed rapid RO2 + OH reactions forming ROOOH, with rate coefficients close to the collision limit. For the OH-initiated degradation of isoprene, global modeling predicts molar hydrotrioxide formation yields of up to 1%, which represents an annual ROOOH formation of about 10 million metric tons. The atmospheric lifetime of ROOOH is estimated to be minutes to hours. Hydrotrioxides represent a previously omitted substance class in the atmosphere, the impact of which needs to be examined. Description Powerful oxidants in the atmosphere Hydrotrioxides (ROOOHs) have intrigued the atmospheric chemistry community because of their strong oxidizing properties and theoretical predictions that they could form in atmospherically relevant RO2 + OH reactions. Much of the work to date has focused on CH3O2, but this chemistry has been found to play a minor role. Using a mass spectrometry–based scheme for direct detection and ab initio calculations supplemented by global modeling, Berndt et al. showed that ROOOHs could form routinely for heavier RO2 and have appreciable lifetimes. Potentially detectable steady-state concentrations in the atmosphere were established. This work draws attention to an important class of strong oxidizing agents previously disregarded in atmospheric kinetics models. —YS RO2 + OH reactions at atmospheric conditions lead to widespread levels of the previously omitted strong oxidizing agent ROOOH.

12 citations


DOI
02 Mar 2022
TL;DR: In this article , two of the most abundant hydroperoxides, hydrogen peroxide (H2O2) and methyl hydroperoxide (MHP, CH3OOH), were measured in the remote atmosphere using chemical ionization mass spectrometry aboard the NASA DC-8 aircraft during the Atmospheric Tomography Mission.
Abstract: Atmospheric hydroperoxides are a significant component of the atmosphere's oxidizing capacity. Two of the most abundant hydroperoxides, hydrogen peroxide (H2O2) and methyl hydroperoxide (MHP, CH3OOH), were measured in the remote atmosphere using chemical ionization mass spectrometry aboard the NASA DC‐8 aircraft during the Atmospheric Tomography Mission. These measurements present a seasonal investigation into the global distribution of these two hydroperoxides, with near pole‐to‐pole coverage across the Pacific and Atlantic Ocean basins and from the marine boundary layer to the upper troposphere and lower stratosphere. H2O2 mixing ratios are highest between 2 and 4 km altitude in the equatorial region of the Atlantic Ocean basin, where they reach global maximums of 3.6–6.5 ppbv depending on season. MHP mixing ratios reach global maximums of 4.3–8.6 ppbv and are highest between 1 and 3 km altitude, but peak in different regions depending on season. A major factor contributing to the global H2O2 distribution is the influence of biomass burning emissions in the Atlantic Ocean basin, encountered in all four seasons, where the highest H2O2 mixing ratios were found to correlate strongly with increased mixing ratios of the biomass burning tracers hydrogen cyanide (HCN) and carbon monoxide (CO). This biomass burning enhanced H2O2 by a factor of 1.3–2.2, on average, in the Atlantic compared with the Pacific Ocean basin.

8 citations


Posted ContentDOI
TL;DR: In this article , the authors extended an established emission estimate approach to arrive at spatially-resolved ERs based on retrieved column-averaged CO2 (XCO2) from the Snapshot Area Mapping (SAM) mode of the Orbiting Carbon Observatory-3 (OCO-3) and column averaged CO from the TROPOspheric Monitoring Instrument (TROPOMI).
Abstract: Abstract. Carbon dioxide (CO2) and air pollutants such as carbon monoxide (CO) are co-emitted by many combustion sources. Previous efforts have combined satellite-based observations of multiple tracers to calculate their emission ratio (ER) for inferring combustion efficiency at regional to city scale. Very few studies have focused on burning efficiency at the sub-city scale or related it to emission sectors using space-based observations. Several factors are important for deriving spatially-resolved ERs from asynchronous satellite measurements including 1) variations in meteorological conditions induced by different overpass times, 2) differences in vertical sensitivity of the retrievals (i.e., averaging kernel profiles), and 3) interferences from the biosphere and biomass burning. In this study, we extended an established emission estimate approach to arrive at spatially-resolved ERs based on retrieved column-averaged CO2 (XCO2) from the Snapshot Area Mapping (SAM) mode of the Orbiting Carbon Observatory-3 (OCO-3) and column-averaged CO from the TROPOspheric Monitoring Instrument (TROPOMI). To evaluate the influence of the confounding factors listed above and further explain the intra-urban variations in ERs, we leveraged a Lagrangian atmospheric transport model and an urban land cover classification dataset and reported ERCO from the sounding level to the overpass- and city- levels. We found that the difference in the overpass times and averaging kernels between OCO and TROPOMI strongly affect the estimated spatially-resolved ERCO. Specifically, a time difference of > 3 hours typically led to dramatic changes in the wind direction and shape of urban plumes and thereby making the calculation of accurate sounding-specific ERCO difficult. After removing those cases from consideration and applying a simple plume shift method when necessary, we discovered significant contrasts in combustion efficiencies between 1) two megacities versus two industry-oriented cities and 2) different regions within a city, based on six to seven nearly-coincident overpasses per city. Results suggest that the combustion efficiency for heavy industry in Los Angeles is slightly lower than its overall city-wide value (< 10 ppb-CO / ppm-CO2). In contrast, ERs related to the heavy industry in Shanghai are found to be much higher than Shanghai’s city-mean and more aligned with city-means of the two industry-oriented Chinese cities (approaching 20 ppb-CO / ppm-CO2). Although investigations based on a larger number of satellite overpasses are needed, our first analysis provides guidance for estimating intra-city gradients in combustion efficiency from future missions, such as those that will map column CO2 and CO concentration simultaneously with high spatiotemporal resolutions.

8 citations


Journal ArticleDOI
TL;DR: In this article , a method for the synergetic use of IASI profile and TROPOMI total-column level 2 retrieval products is presented, which uses the output of the individual retrievals and consists of linear algebra a posteriori calculations.
Abstract: Abstract. The thermal infrared nadir spectra of IASI (Infrared Atmospheric Sounding Interferometer) are successfully used for retrievals of different atmospheric trace gas profiles. However, these retrievals offer generally reduced information about the lowermost tropospheric layer due to the lack of thermal contrast close to the surface. Spectra of scattered solar radiation observed in the near-infrared and/or shortwave infrared, for instance by TROPOMI (TROPOspheric Monitoring Instrument), offer higher sensitivity near the ground and are used for the retrieval of total-column-averaged mixing ratios of a variety of atmospheric trace gases. Here we present a method for the synergetic use of IASI profile and TROPOMI total-column level 2 retrieval products. Our method uses the output of the individual retrievals and consists of linear algebra a posteriori calculations (i.e. calculation after the individual retrievals). We show that this approach has strong theoretical similarities to applying the spectra of the different sensors together in a single retrieval procedure but with the substantial advantage of being applicable to data generated with different individual retrieval processors, of being very time efficient, and of directly benefiting from the high quality and most recent improvements of the individual retrieval processors. We demonstrate the method exemplarily for atmospheric methane (CH4). We perform a theoretical evaluation and show that the a posteriori combination method yields a total-column-averaged CH4 product (XCH4) that conserves the good sensitivity of the corresponding TROPOMI product while merging it with the high-quality upper troposphere–lower stratosphere (UTLS) CH4 partial-column information of the corresponding IASI product. As a consequence, the combined product offers additional sensitivity for the tropospheric CH4 partial column, which is not provided by the individual TROPOMI nor the individual IASI product. The theoretically predicted synergetic effect is verified by comparisons to CH4 reference data obtained from collocated XCH4 measurements at 14 globally distributed TCCON (Total Carbon Column Observing Network) stations, CH4 profile measurements made by 36 individual AirCore soundings, and tropospheric CH4 data derived from continuous ground-based in situ observations made at two nearby Global Atmospheric Watch (GAW) mountain stations. The comparisons clearly demonstrate that the combined product can reliably detect the actual variations of atmospheric XCH4, CH4 in the UTLS, and CH4 in the troposphere. A similar good reliability for the latter is not achievable by the individual TROPOMI and IASI products.

5 citations



Peer ReviewDOI
01 Mar 2022
TL;DR: In this article , the authors compare the observations with two models, a diurnal steady-state photochemical box model and the global chemical transport model Goddard Earth Observing System (GEOS)‐Chem.
Abstract: Hydrogen peroxide (H2O2) and methyl hydroperoxide (MHP, CH3OOH) serve as HOx (OH and HO2 radicals) reservoirs and therefore as useful tracers of HOx chemistry. Both hydroperoxides were measured during the 2016–2018 Atmospheric Tomography Mission as part of a global survey of the remote troposphere over the Pacific and Atlantic Ocean basins conducted using the NASA DC‐8 aircraft. To assess the relative contributions of chemical and physical processes to the global hydroperoxide budget and their impact on atmospheric oxidation potential, we compare the observations with two models, a diurnal steady‐state photochemical box model and the global chemical transport model Goddard Earth Observing System (GEOS)‐Chem. We find that the models systematically under‐predict H2O2 by 5%–20% and over‐predict MHP by 40%–50% relative to measurements. In the marine boundary layer, over‐predictions of H2O2 in a photochemical box model are used to estimate H2O2 boundary‐layer mean deposition velocities of 1.0–1.32 cm s−1, depending on season; this process contributes to up to 5%–10% of HOx loss in this region. In the upper troposphere and lower stratosphere, MHP is under‐predicted and H2O2 is over‐predicted by a factor of 2–3 on average. The differences between the observations and predictions are associated with recent convection: MHP is under‐estimated and H2O2 is over‐estimated in air parcels that have experienced recent convective influence.

3 citations


Journal ArticleDOI
TL;DR: This paper analyzed SO2 emission factors and variability in smoke plumes from US wildfires and agricultural fires, as well as their relationship to sulfate and hydroxymethanesulfonate (HMS) formation.
Abstract: Abstract. Fires emit sufficient sulfur to affect local and regional air quality and climate. This study analyzes SO2 emission factors and variability in smoke plumes from US wildfires and agricultural fires, as well as their relationship to sulfate and hydroxymethanesulfonate (HMS) formation. Observed SO2 emission factors for various fuel types show good agreement with the latest reviews of biomass burning emission factors, producing an emission factor range of 0.47–1.2 g SO2 kg−1 C. These emission factors vary with geographic location in a way that suggests that deposition of coal burning emissions and application of sulfur-containing fertilizers likely play a role in the larger observed values, which are primarily associated with agricultural burning. A 0-D box model generally reproduces the observed trends of SO2 and total sulfate (inorganic + organic) in aging wildfire plumes. In many cases, modeled HMS is consistent with the observed organosulfur concentrations. However, a comparison of observed organosulfur and modeled HMS suggests that multiple organosulfur compounds are likely responsible for the observations but that the chemistry of these compounds yields similar production and loss rates as that of HMS, resulting in good agreement with the modeled results. We provide suggestions for constraining the organosulfur compounds observed during these flights, and we show that the chemistry of HMS can allow organosulfur to act as an S(IV) reservoir under conditions of pH > 6 and liquid water content >10−7 g sm−3. This can facilitate long-range transport of sulfur emissions, resulting in increased SO2 and eventually sulfate in transported smoke.

3 citations


Journal ArticleDOI
TL;DR: This paper used global airborne observations of propane and ethane from the Atmospheric Tomography (ATom) and HIAPER Pole-to-Pole Observations (HIPPO), as well as U.S.-based aircraft and tower observations by NOAA and from the NCAR FRAPPE campaign as tracers for emissions from oil and gas operations.
Abstract: We use global airborne observations of propane (C3H8) and ethane (C2H6) from the Atmospheric Tomography (ATom) and HIAPER Pole-to-Pole Observations (HIPPO), as well as U.S.-based aircraft and tower observations by NOAA and from the NCAR FRAPPE campaign as tracers for emissions from oil and gas operations. To simulate global mole fraction fields for these gases, we update the default emissions’ configuration of C3H8 used by the global chemical transport model, GEOS-Chem v13.0.0, using a scaled C2H6 spatial proxy. With the updated emissions, simulations of both C3H8 and C2H6 using GEOS-Chem are in reasonable agreement with ATom and HIPPO observations, though the updated emission fields underestimate C3H8 accumulation in the arctic wintertime, pointing to additional sources of this gas in the high latitudes (e.g., Europe). Using a Bayesian hierarchical model, we estimate global emissions of C2H6 and C3H8 from fossil fuel production in 2016–2018 to be 13.3 ± 0.7 (95% CI) and 14.7 ± 0.8 (95% CI) Tg/year, respectively. We calculate bottom-up hydrocarbon emission ratios using basin composition measurements weighted by gas production and find their magnitude is higher than expected and is similar to ratios informed by our revised alkane emissions. This suggests that emissions are dominated by pre-processing activities in oil-producing basins.

2 citations


Journal ArticleDOI
01 Jan 2022-Elementa
TL;DR: In this paper , a holistic examination of tropospheric ozone reactivity in South Korea using comprehensive NASA DC-8 airborne measurements collected during the Korea-United States Air Quality field study and chemical transport models is presented.
Abstract: We present a holistic examination of tropospheric OH reactivity (OHR) in South Korea using comprehensive NASA DC-8 airborne measurements collected during the Korea–United States Air Quality field study and chemical transport models. The observed total OHR (tOHR) averaged in the planetary boundary layer (PBL, <2.0 km) and free troposphere was 5.2 s−1 and 2.0 s−1 during the campaign, respectively. These values were higher than the calculated OHR (cOHR, 3.4 s−1, 1.0 s−1) derived from trace-gas observations, indicating missing OHR fractions in the PBL and free troposphere of 35% and 50%, respectively. Incorporating nonobserved secondary species from the observationally constrained box model increased cOHR to 4.0 s−1 in the PBL and 1.3 s−1 in the free troposphere. Simulated OHR (sOHR, 2.7 s−1, 0.8 s−1) was substantially lower than both tOHR and cOHR by as much as 60%. This underestimate was substantial in the free troposphere and marine boundary layer of the marginal sea (Yellow Sea). We then discuss the potential causes of unaccounted OHR. First, we suggest improving the accuracy of tropospheric reaction kinetics, which vary significantly in the available literature. Second, underestimated emissions of anthropogenic CO and oxygenated volatile organic compounds in East Asia contributed to the discrepancy between tOHR and sOHR. In addition, oxygenated and biogenic volatile organic compounds emitted from the marginal sea may contribute substantially to the regional OHR. Typical chemical transport models underestimate these sources, leading to a large missing OHR fraction. Despite this discrepancy, we found that simulated OH concentrations were comparable with those observed during the campaign because of slow OH recycling rates in the models; therefore, the models predicted less formation of photochemical oxidation products such as ozone.

Journal ArticleDOI
TL;DR: In this paper , the authors describe the characterization and field deployment of chemical ionization mass spectrometry (CIMS) using a recently developed focusing ion-molecule reactor (FIMR) and ammonium-water cluster (NH4+⋅H2O) as the reagent ion (denoted as NH4+ CIMS).
Abstract: Abstract. We describe the characterization and field deployment of chemical ionization mass spectrometry (CIMS) using a recently developed focusing ion-molecule reactor (FIMR) and ammonium–water cluster (NH4+⋅H2O) as the reagent ion (denoted as NH4+ CIMS). We show that NH4+⋅H2O is a highly versatile reagent ion for measurements of a wide range of oxygenated organic compounds. The major product ion is the cluster with NH4+ produced via ligand-switching reactions. Other product ions (e.g., protonated ion, cluster ion with NH4+⋅H2O, with H3O+, and with H3O+⋅H2O) are also produced, but with minor fractions for most of the oxygenated compounds studied here. The instrument sensitivities (ion counts per second per part per billion by volume, cps ppbv−1) and product distributions are strongly dependent on the instrument operating conditions, including the ratio of ammonia (NH3) and H2O flows and the drift voltages, which should be carefully selected to ensure NH4+⋅H2O as the predominant reagent ion and to optimize sensitivities. For monofunctional analytes, the NH4+⋅H2O chemistry exhibits high sensitivity (i.e., >1000 cps ppbv−1) to ketones, moderate sensitivity (i.e., between 100 and 1000 cps ppbv−1) to aldehydes, alcohols, organic acids, and monoterpenes, low sensitivity (i.e., between 10 and 100 cps ppbv−1) to isoprene and C1 and C2 organics, and negligible sensitivity (i.e., <10 cps ppbv−1) to reduced aromatics. The instrumental sensitivities of analytes depend on the binding energy of the analyte–NH4+ cluster, which can be estimated using voltage scanning. This offers the possibility to constrain the sensitivity of analytes for which no calibration standards exist. This instrument was deployed in the RECAP campaign (Re-Evaluating the Chemistry of Air Pollutants in California) in Pasadena, California, during summer 2021. Measurement comparisons against co-located mass spectrometers show that the NH4+ CIMS is capable of detecting compounds from a wide range of chemical classes. The NH4+ CIMS is valuable for quantification of oxygenated volatile organic compounds (VOCs) and is complementary to existing chemical ionization schemes.

Journal ArticleDOI
01 Jan 2022-Elementa
TL;DR: In this article , the chemical evolution of petrochemical emissions was examined utilizing near-source and downwind plume transects, where small alkenes, such as ethene (C2H4), propene (C3H6), and 1,3-butadiene, dominated the hydroxyl (OH) radical reactivity near the source region.
Abstract: Emissions and secondary photochemical products from the Daesan petrochemical complex (DPCC), on the west coast of South Korea, were measured from the NASA DC-8 research aircraft during the Korea-United States Air Quality campaign in 2016. The chemical evolution of petrochemical emissions was examined utilizing near-source and downwind plume transects. Small alkenes, such as ethene (C2H4), propene (C3H6), and 1,3-butadiene (C4H6), dominated the hydroxyl (OH) radical reactivity near the source region. The oxidation of these alkenes in the petrochemical plumes led to efficient conversion of nitrogen oxides (NOx) to nitric acid (HNO3), peroxycarboxylic nitric anhydrides (PANs), and alkyl nitrates (ANs), where the sum of the speciated reactive nitrogen contributes more than 80% of NOy within a few hours. Large enhancements of short-lived NOx oxidation products, such as hydroxy nitrates (HNs) and peroxyacrylic nitric anhydride, were observed, in conjunction with high ozone levels of up to 250 ppb, which are attributed to oxidation of alkenes such as 1,3-butadiene. Instantaneous ozone production rates, P(O3), near and downwind of the DPCC ranged from 9 to 24 ppb h−1, which were higher than those over Seoul. Ozone production efficiencies ranged from 6 to 10 downwind of the DPCC and were lower than 10 over Seoul. The contributions of alkenes to the instantaneous secondary organic aerosol (SOA) production rate, P(SOA), were estimated to be comparable to those of more common SOA precursors such as aromatics at intermediate distances from the DPCC. A model case study constrained to an extensive set of observations provided a diagnostic of petrochemical plume chemistry. The simulated plume chemistry reproduced the observed evolution of ozone and short-lived reactive nitrogen compounds, such as PANs and HNs as well as the rate and efficiency of ozone production. The simulated peroxy nitrates (PNs) budget included large contributions (approximately 30%) from unmeasured PNs including peroxyhydroxyacetic nitric anhydride and peroxybenzoic nitric anhydride. The large, predicted levels of these PAN compounds suggest their potential importance in chemical evolution of petrochemical plumes. One unique feature of the DPCC plumes is the substantial contribution of 1,3-butadiene to ozone and potentially SOA production. This work suggests that reductions in small alkene, especially 1,3-butadiene, emissions from the DPCC should be a priority for reducing downwind ozone.

Journal ArticleDOI
01 Aug 2022-CheM
TL;DR: In this article , the isoprene photochemical oxidation in this intermediate-NOx regime was investigated by examining the yield distributions of two major oxidation products, i.e., methacrolein and methyl vinyl ketone, using chamber experiments and aircraft measurements.
Abstract: •Formation of MACR and MVK from isoprene photooxidation is enhanced with sub-ppb NO •Accelerated production of MACR and MVK results from the isoprene peroxy interconversion •Isoprene peroxy interconversion is prevalent in many vegetated continents over the globe The reactive chemistry of isoprene, which is the dominant hydrocarbon in biogenic emissions, has a controlling influence on the composition and cleansing capacity of the global atmosphere. Despite decades of research, isoprene continues to offer surprises in its atmospheric chemistry, particularly in environments with low-to-moderate levels of nitrogen oxides (NOx). Here, we probe the isoprene photochemical oxidation in this “intermediate-NOx” regime by examining the yield distributions of two major oxidation products, i.e., methacrolein and methyl vinyl ketone, using chamber experiments and aircraft measurements. Such a dataset provides strong constraints on the kinetics of the isoprene peroxy radical interconversion—a newly discovered mechanism that essentially governs the isoprene oxidation carbon flow. Insights from measurement-model comparisons further reveal an efficient operation of this mechanism across all the vegetated continents over the globe, constantly modulating the radical cycling and contributing to the formation of ozone and organic aerosols in the atmosphere. The reactive chemistry of isoprene, which is the dominant hydrocarbon in biogenic emissions, has a controlling influence on the composition and cleansing capacity of the global atmosphere. Despite decades of research, isoprene continues to offer surprises in its atmospheric chemistry, particularly in environments with low-to-moderate levels of nitrogen oxides (NOx). Here, we probe the isoprene photochemical oxidation in this “intermediate-NOx” regime by examining the yield distributions of two major oxidation products, i.e., methacrolein and methyl vinyl ketone, using chamber experiments and aircraft measurements. Such a dataset provides strong constraints on the kinetics of the isoprene peroxy radical interconversion—a newly discovered mechanism that essentially governs the isoprene oxidation carbon flow. Insights from measurement-model comparisons further reveal an efficient operation of this mechanism across all the vegetated continents over the globe, constantly modulating the radical cycling and contributing to the formation of ozone and organic aerosols in the atmosphere.

TL;DR: In this article , an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO 2 ) from total column observations from ground-based TCCON observations is described.
Abstract: 25 We describe an approach for determining limited information about the vertical distribution of carbon monoxide (CO) and carbon dioxide (CO 2 ) from total column observations from ground-based TCCON observations. For long-lived trace gases, such as CO and CO 2 , it has been difficult to retrieve information about their vertical distribution from spectral line shapes in the shortwave infrared (SWIR) spectra because of the large doppler widths at 6000 cm -1 , and errors in the spectroscopy and in the 30 atmospheric temperature profile which mask the effects of variations in their mixing ratio with altitude in the troposphere. For CO 2 the challenge is especially difficult given that these variations are typically 2% or less. Nevertheless, if sufficient accuracy can be obtained, such information would be highly valuable for evaluation of retrievals from satellites and more generally for improving the estimate of surface sources and sinks of these trace gases. We present here the Temporal Atmospheric Retrieval 35 Determining Information from Secondary Scaling (TARDISS) retrieval algorithm. TARDISS uses several simultaneously obtained total column observations of the same gas from different absorption bands with distinctly different vertical averaging kernels. Since TARDISS avoids spectral re-fitting by ingesting retrieved column abundances, it is very fast and processes years of data in minutes. The different total column retrievals are combined using a Bayesian approach where the weights and 40 temporal covariance applied to the different retrievals include additional constraints on the diurnal variation in the vertical distribution for these gases. We assume that only the near surface is influenced by local sources and sinks, while variations in the distribution in the middle and upper troposphere result primarily from advection that can be independently constrained using reanalysis data about the variation in mid-tropospheric potential temperature. Using measurements from five North American 45 TCCON sites, we find that the retrieved lower partial column (between the surface and ~800 hPa) of the CO and CO 2 dry mole fractions (DMF) have slopes of 1.001 ± 0.002 and 1.007 ± 0.002 with respect to lower column DMF from integrated in situ data measured by aircraft and AirCore. The average error for our CO retrieval is 0.857 ppb (~1%) while the average error for our CO 2 retrieval is 3.55 ppm (~0.8%). We calculate degrees of freedom from signal of 0.218 per measurement for lower partial column CO on 50 average and of 0.353 per measurement for lower partial column CO 2 on average. Compared with classical line-shape-derived vertical profile retrievals, our algorithm reduces the influence of forward model errors such as imprecision in spectroscopy (line shapes and intensities) and in the instrument line shape. We anticipate that this approach will find broad application for use in carbon cycle science.