scispace - formally typeset
Search or ask a question

Showing papers in "Earth System Science Data in 2022"


Journal ArticleDOI
University of Exeter1, Max Planck Institute for Biogeochemistry2, Tyndall Centre3, Atlantic Oceanographic and Meteorological Laboratory4, Bjerknes Centre for Climate Research5, University of Maryland, College Park6, CICERO Center for International Climate Research7, Leibniz Institute for Baltic Sea Research8, University of Reading9, Leibniz Institute of Marine Sciences10, Goddard Space Flight Center11, Flanders Marine Institute12, Food and Agriculture Organization13, Alfred Wegener Institute for Polar and Marine Research14, National Oceanic and Atmospheric Administration15, University of East Anglia16, Japan Meteorological Agency17, ETH Zurich18, National Institute for Environmental Studies19, Karlsruhe Institute of Technology20, Laboratoire des Sciences du Climat et de l'Environnement21, Tula Foundation22, Hertie Institute for Clinical Brain Research23, Nanjing University of Information Science and Technology24, Wageningen University and Research Centre25, Tsinghua University26, University of Western Sydney27, Cooperative Institute for Research in Environmental Sciences28, University of Florida29, Center for Neuroscience and Regenerative Medicine30, Woods Hole Research Center31, Michigan State University32, Tianjin University33, Auburn University34, Jilin Medical University35, Max Planck Institute for Meteorology36, Imperial College London37, Centre National de Recherches Météorologiques38, University of Groningen39, Tohoku University40, Ludwig Maximilian University of Munich41, Bank for International Settlements42, Institut Pierre-Simon Laplace43, Environment Canada44, North West Agriculture and Forestry University45, Northwest A&F University46, Pacific Marine Environmental Laboratory47, Stanford University48, Utrecht University49
TL;DR: Friedlingstein et al. as mentioned in this paper presented and synthesized datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including fossil CO2 emissions, land use and land-use change data and bookkeeping models.
Abstract: Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the first time, an approach is shown to reconcile the difference in our ELUC estimate with the one from national greenhouse gas inventories, supporting the assessment of collective countries' climate progress. For the year 2020, EFOS declined by 5.4 % relative to 2019, with fossil emissions at 9.5 ± 0.5 GtC yr−1 (9.3 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 0.9 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission of 10.2 ± 0.8 GtC yr−1 (37.4 ± 2.9 GtCO2). Also, for 2020, GATM was 5.0 ± 0.2 GtC yr−1 (2.4 ± 0.1 ppm yr−1), SOCEAN was 3.0 ± 0.4 GtC yr−1, and SLAND was 2.9 ± 1 GtC yr−1, with a BIM of −0.8 GtC yr−1. The global atmospheric CO2 concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021 suggest a rebound in EFOS relative to 2020 of +4.8 % (4.2 % to 5.4 %) globally. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2020, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al., 2021).

343 citations


Journal ArticleDOI
Pierre Friedlingstein1, Sönke Zaehle2, Corinne Le Quéré3, Christian Rödenbeck2, Bronte Tilbrook, Henry C. Bittig4, Denis Pierrot5, Louise Chini6, Jan Ivar Korsbakken7, Nicolas Bellouin8, Toste Tanhua9, Benjamin Poulter10, Peter Landschützer11, Francesco N. Tubiello12, Judith Hauck13, Are Olsen14, Vivek K. Arora15, Colm Sweeney16, Almut Arneth17, Marion Gehlen18, Hiroyuki Tsujino19, Daniel P. Kennedy20, Yosuke Iida19, Luke Gregor21, Jiye Zeng22, George C. Hurtt6, Nicolas Mayot23, Giacomo Grassi24, Shin-Ichiro Nakaoka22, Frédéric Chevallier18, Clemens Schwingshackl7, Wiley Evans25, Meike Becker26, Thomas Gasser27, Xu Yue28, Katie Pocock25, Stephanie Falk29, Thanos Gkritzalis11, Naiqing Pan30, Ingrid T. van der Laan-Luijkx31, Fraser Holding32, Carlos Gustavo Halaburda, Guanghong Zhou33, Peter Angele34, Jianling Chen1, e6gehqc68135, Carlos Muñoz Pérez23, Hiroshi Niinami36, Zongwe Binesikwe Crystal Hardy, Samuel Bourne37, Ralf Wüsthofen38, Paulo Brito, Christian Liguori39, Juan A. Martin-Ramos, Rattan Lal, kensetyrdhhtml2mdcom40, Staffan Furusten, Luca Miceli41, Eric Horster16, V. Miranda Chase, Field Palaeobiology Lab30, Living Tree Cbd Gummies, Lifeng Qin34, Yong Tang42, Annie Phillips43, Nathalie Fenouil26, mark, Karina Querne de Carvalho44, Satya Wydya Yenny, Maja Bak Herrie, Silvia Ravelli45, Andreas Gerster46, Denise Hottmann47, Wui-Lee Chang, Andreas Lutz48, Olga D. Vorob'eva49, Pallavi Banerjee1, Verónica Undurraga50, Jovan Babić, Michele D. Wallace9, Mònica Ginés-Blasi, 에볼루션카지노51, James Kelvin29, Christos Kontzinos1, Охунова Дилафруз Муминовна, Isabell Diekmann, Emily Burgoyne16, Vilemina Čenić52, Naomi Gikonyo26, CHAO LUAN21, Benjamin Pfluger53, Benjamin Pfluger54, A. J. Shields, Kobzos, Laszlo55, Adrian Langer56, Stuart L. Weinstein55, Abdullah ÖZÇELİK57, Yi Chen58, Anzhelika Solodka59, Valery Vasil'evich Kozlov60, Н.С. Рыжук, Roshan Vasant Shinde, Dr Sandeep Haribhau Wankhade, Dr Nitin Gajanan Shekapure, Mr Sachin Shrikant …61, Mylene Charon7, David Seibt62, Kobi Peled, None Rahmi52 
University of Exeter1, Max Planck Institute for Biogeochemistry2, Tyndall Centre3, Leibniz Institute for Baltic Sea Research4, Atlantic Oceanographic and Meteorological Laboratory5, University of Maryland, College Park6, CICERO Center for International Climate Research7, University of Reading8, Leibniz Institute of Marine Sciences9, Goddard Space Flight Center10, Flanders Marine Institute11, Food and Agriculture Organization12, Alfred Wegener Institute for Polar and Marine Research13, Geophysical Institute14, University of Victoria15, National Oceanic and Atmospheric Administration16, Karlsruhe Institute of Technology17, Laboratoire des Sciences du Climat et de l'Environnement18, Japan Meteorological Agency19, Indiana University20, ETH Zurich21, National Institute for Environmental Studies22, University of East Anglia23, European Commission24, Tula Foundation25, Bjerknes Centre for Climate Research26, Hertie Institute for Clinical Brain Research27, Nanjing University of Information Science and Technology28, Ludwig Maximilian University of Munich29, Auburn University30, Wageningen University and Research Centre31, University of Western Sydney32, Cooperative Institute for Research in Environmental Sciences33, Tsinghua University34, University of Florida35, Center for Neuroscience and Regenerative Medicine36, Woods Hole Research Center37, University of Alaska Fairbanks38, Princeton University39, Michigan State University40, University of Washington41, Appalachian State University42, Sun Yat-sen University43, Imperial College London44, University of Groningen45, University of Tennessee46, Washington University in St. Louis47, Jilin Medical University48, Tohoku University49, Rutgers University50, Centre for Research on Ecology and Forestry Applications51, Institut Pierre-Simon Laplace52, North West Agriculture and Forestry University53, Northwest A&F University54, Pacific Marine Environmental Laboratory55, Xi'an Jiaotong University56, Stanford University57, National Center for Atmospheric Research58, University of Edinburgh59, Max Planck Institute for Meteorology60, Utrecht University61, Oak Ridge National Laboratory62
TL;DR: Friedlingstein et al. as mentioned in this paper presented and synthesized data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties, including fossil CO2 emissions, land use and land-use change data and bookkeeping models.
Abstract: Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1 (40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with a BIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b).

98 citations


Journal ArticleDOI
TL;DR: Zhao et al. as mentioned in this paper generated a global dataset of annual urban extents using consistent NTL observations and analyzed the spatiotemporal patterns of global urban dynamics over nearly 30 years.
Abstract: Abstract. Understanding the spatiotemporal dynamics of global urbanization over a long time series is increasingly important for sustainable development goals. The harmonized nighttime light (NTL) time-series composites created by fusing multi-source NTL observations provide a long and consistent record of the nightscape for characterizing and understanding global urban dynamics. In this study, we generated a global dataset of annual urban extents (1992–2020) using consistent NTL observations and analyzed the spatiotemporal patterns of global urban dynamics over nearly 30 years. The urbanized areas associated with locally high intensity human activities were mapped from the global NTL time-series imagery using a new stepwise-partitioning framework. This framework includes three components: (1) clustering of NTL signals to generate potential urban clusters, (2) identification of optimal thresholds to delineate annual urban extents, and (3) check of temporal consistency to correct pixel-level urban dynamics. We found that the global urban land area percentage of the Earth's land surface rose from 0.22 % to 0.69 % between 1992 and 2020. Urban dynamics over the past 3 decades at the continent, country, and city levels exhibit various spatiotemporal patterns. Our resulting global urban extents (1992–2020) were evaluated using other urban remote sensing products and socioeconomic data. The evaluations indicate that this dataset is reliable for characterizing spatial extents associated with intensive human settlement and high-intensity socioeconomic activities. The dataset of global urban extents from this study can provide unique information to capture the historical and future trajectories of urbanization and to understand and tackle urbanization impacts on food security, biodiversity, climate change, and public well-being and health. This dataset can be downloaded from https://doi.org/10.6084/m9.figshare.16602224.v1 (Zhao et al., 2021).

35 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a 100m-resolution global map of local climate zones (LCZs), a universal urban typology that can distinguish urban areas on a holistic basis, accounting for the typical combination of micro-scale land covers and associated physical properties.
Abstract: Abstract. There is a scientific consensus on the need for spatially detailed information on urban landscapes at a global scale. These data can support a range of environmental services, since cities are places of intense resource consumption and waste generation and of concentrated infrastructure and human settlement exposed to multiple hazards of natural and anthropogenic origin. In the face of climate change, urban data are also required to explore future urbanization pathways and urban design strategies in order to lock in long-term resilience and sustainability, protecting cities from future decisions that could undermine their adaptability and mitigation role. To serve this purpose, we present a 100 m-resolution global map of local climate zones (LCZs), a universal urban typology that can distinguish urban areas on a holistic basis, accounting for the typical combination of micro-scale land covers and associated physical properties. The global LCZ map, composed of 10 built and 7 natural land cover types, is generated by feeding an unprecedented number of labelled training areas and earth observation images into lightweight random forest models. Its quality is assessed using a bootstrap cross-validation alongside a thematic benchmark for 150 selected functional urban areas using independent global and open-source data on surface cover, surface imperviousness, building height, and anthropogenic heat. As each LCZ type is associated with generic numerical descriptions of key urban canopy parameters that regulate atmospheric responses to urbanization, the availability of this globally consistent and climate-relevant urban description is an important prerequisite for supporting model development and creating evidence-based climate-sensitive urban planning policies. This dataset can be downloaded from https://doi.org/10.5281/zenodo.6364594 (Demuzere et al., 2022a).

33 citations


Journal ArticleDOI
TL;DR: GeoDAR as discussed by the authors is a georeferenced global Dams And Reservoirs dataset, created by utilizing the Google Maps geocoding application programming interface (API) and multi-source inventories.
Abstract: Abstract. Dams and reservoirs are among the most widespread human-made infrastructures on Earth. Despite their societal and environmental significance, spatial inventories of dams and reservoirs, even for the large ones, are insufficient. A dilemma of the existing georeferenced dam datasets is the polarized focus on either dam quantity and spatial coverage (e.g., GlObal geOreferenced Database of Dams, GOODD) or detailed attributes for a limited dam quantity or region (e.g., GRanD (Global Reservoir and Dam database) and national inventories). One of the most comprehensive datasets, the World Register of Dams (WRD), maintained by the International Commission on Large Dams (ICOLD), documents nearly 60 000 dams with an extensive suite of attributes. Unfortunately, the WRD records provide no geographic coordinates, limiting the benefits of their attributes for spatially explicit applications. To bridge the gap between attribute accessibility and spatial explicitness, we introduce the Georeferenced global Dams And Reservoirs (GeoDAR) dataset, created by utilizing the Google Maps geocoding application programming interface (API) and multi-source inventories. We release GeoDAR in two successive versions (v1.0 and v1.1) at https://doi.org/10.5281/zenodo.6163413 (Wang et al., 2022). GeoDAR v1.0 holds 22 560 dam points georeferenced from the WRD, whereas v1.1 consists of (a) 24 783 dam points after a harmonization between GeoDAR v1.0 and GRanD v1.3 and (b) 21 515 reservoir polygons retrieved from high-resolution water masks based on a one-to-one relationship between dams and reservoirs. Due to geocoding challenges, GeoDAR spatially resolved ∼ 40 % of the records in the WRD, which, however, comprise over 90 % of the total reservoir area, catchment area, and reservoir storage capacity. GeoDAR does not release the proprietary WRD attributes, but upon individual user requests we may provide assistance in associating GeoDAR spatial features with the WRD attribute information that users have acquired from ICOLD. Despite this limit, GeoDAR, with a dam quantity triple that of GRanD, significantly enhances the spatial details of smaller but more widespread dams and reservoirs and complements other existing global dam inventories. Along with its extended attribute accessibility, GeoDAR is expected to benefit a broad range of applications in hydrologic modeling, water resource management, ecosystem health, and energy planning.

33 citations


Journal ArticleDOI
TL;DR: The FAOSTAT emissions shares database has been used by as discussed by the authors to study the role of food-related emissions generated outside of agricultural land, in pre-and post-production processes along the agri-food system, at global and regional scales.
Abstract: Abstract. We present results from the FAOSTAT emissions shares database, covering emissions from agri-food systems and their shares to total anthropogenic emissions for 196 countries and 40 territories for the period 1990–2019. We find that in 2019, global agri-food system emissions were 16.5 (95 %; CI range: 11–22) billion metric tonnes (Gt CO2 eq. yr−1), corresponding to 31 % (range: 19 %–43 %) of total anthropogenic emissions. Of the agri-food system total, global emissions within the farm gate – from crop and livestock production processes including on-farm energy use – were 7.2 Gt CO2 eq. yr−1; emissions from land use change, due to deforestation and peatland degradation, were 3.5 Gt CO2 eq. yr−1; and emissions from pre- and post-production processes – manufacturing of fertilizers, food processing, packaging, transport, retail, household consumption and food waste disposal – were 5.8 Gt CO2 eq. yr−1. Over the study period 1990–2019, agri-food system emissions increased in total by 17 %, largely driven by a doubling of emissions from pre- and post-production processes. Conversely, the FAOSTAT data show that since 1990 land use emissions decreased by 25 %, while emissions within the farm gate increased 9 %. In 2019, in terms of individual greenhouse gases (GHGs), pre- and post-production processes emitted the most CO2 (3.9 Gt CO2 yr−1), preceding land use change (3.3 Gt CO2 yr−1) and farm gate (1.2 Gt CO2 yr−1) emissions. Conversely, farm gate activities were by far the major emitter of methane (140 Mt CH4 yr−1) and of nitrous oxide (7.8 Mt N2O yr−1). Pre- and post-production processes were also significant emitters of methane (49 Mt CH4 yr−1), mostly generated from the decay of solid food waste in landfills and open dumps. One key trend over the 30-year period since 1990 highlighted by our analysis is the increasingly important role of food-related emissions generated outside of agricultural land, in pre- and post-production processes along the agri-food system, at global, regional and national scales. In fact, our data show that by 2019, pre- and post-production processes had overtaken farm gate processes to become the largest GHG component of agri-food system emissions in Annex I parties (2.2 Gt CO2 eq. yr−1). They also more than doubled in non-Annex I parties (to 3.5 Gt CO2 eq. yr−1), becoming larger than emissions from land use change. By 2019 food supply chains had become the largest agri-food system component in China (1100 Mt CO2 eq. yr−1), the USA (700 Mt CO2 eq. yr−1) and the EU-27 (600 Mt CO2 eq. yr−1). This has important repercussions for food-relevant national mitigation strategies, considering that until recently these have focused mainly on reductions of non-CO2 gases within the farm gate and on CO2 mitigation from land use change. The information used in this work is available as open data with DOI https://doi.org/10.5281/zenodo.5615082 (Tubiello et al., 2021d). It is also available to users via the FAOSTAT database (https://www.fao.org/faostat/en/#data/EM; FAO, 2021a), with annual updates.

33 citations


Journal ArticleDOI
TL;DR: In this paper , the authors proposed a novel permafrost datasets for the Northern Hemisphere (NH), including predictions of the mean annual ground temperature (MAGT) at the depth of zero annual amplitude (DZAA) and active layer thickness (ALT) with 1 km resolution for the period of 2000-2016, as well as estimates of the probability of permafure occurrence and permafore zonation based on hydrothermal conditions.
Abstract: Abstract. Monitoring the thermal state of permafrost (TSP) is important in many environmental science and engineering applications. However, such data are generally unavailable, mainly due to the lack of ground observations and the uncertainty of traditional physical models. This study produces novel permafrost datasets for the Northern Hemisphere (NH), including predictions of the mean annual ground temperature (MAGT) at the depth of zero annual amplitude (DZAA) (approximately 3 to 25 m) and active layer thickness (ALT) with 1 km resolution for the period of 2000–2016, as well as estimates of the probability of permafrost occurrence and permafrost zonation based on hydrothermal conditions. These datasets integrate unprecedentedly large amounts of field data (1002 boreholes for MAGT and 452 sites for ALT) and multisource geospatial data, especially remote sensing data, using statistical learning modeling with an ensemble strategy. Thus, the resulting data are more accurate than those of previous circumpolar maps (bias = 0.02±0.16 ∘C and RMSE = 1.32±0.13 ∘C for MAGT; bias = 2.71±16.46 cm and RMSE = 86.93±19.61 cm for ALT). The datasets suggest that the areal extent of permafrost (MAGT ≤0 ∘C) in the NH, excluding glaciers and lakes, is approximately 14.77 (13.60–18.97) × 106 km2 and that the areal extent of permafrost regions (permafrost probability >0) is approximately 19.82×106 km2. The areal fractions of humid, semiarid/subhumid, and arid permafrost regions are 51.56 %, 45.07 %, and 3.37 %, respectively. The areal fractions of cold (≤-3.0 ∘C), cool (−3.0 ∘C to −1.5 ∘C), and warm (>-1.5 ∘C) permafrost regions are 37.80 %, 14.30 %, and 47.90 %, respectively. These new datasets based on the most comprehensive field data to date contribute to an updated understanding of the thermal state and zonation of permafrost in the NH. The datasets are potentially useful for various fields, such as climatology, hydrology, ecology, agriculture, public health, and engineering planning. All of the datasets are published through the National Tibetan Plateau Data Center (TPDC), and the link is https://doi.org/10.11888/Geocry.tpdc.271190 (Ran et al., 2021a).

30 citations


Journal ArticleDOI
TL;DR: In this paper , the authors introduce the S2M (SAFRAN-SURFEX/ISBA-Crocus-MEPRA) reanalysis in the French Alps, Pyrenees and Corsica, spanning the time period from 1958 to 2021.
Abstract: Abstract. This work introduces the S2M (SAFRAN–SURFEX/ISBA–Crocus–MEPRA) meteorological and snow cover reanalysis in the French Alps, Pyrenees and Corsica, spanning the time period from 1958 to 2021. The simulations are made over elementary areas, referred to as massifs, designed to represent the main drivers of the spatial variability observed in mountain ranges (elevation, slope and aspect). The meteorological reanalysis is performed by the SAFRAN system, which combines information from numerical weather prediction models (ERA-40 reanalysis from 1958 to 2002, ARPEGE from 2002 to 2021) and the best possible set of available in situ meteorological observations. SAFRAN outputs are used to drive the Crocus detailed snow cover model, which is part of the land surface scheme SURFEX/ISBA. This model chain provides simulations of the evolution of the snow cover, underlying ground and the associated avalanche hazard using the MEPRA model. This contribution describes and discusses the main climatological characteristics (climatology, variability and trends) and the main limitations of this dataset. We provide a short overview of the scientific applications using this reanalysis in various scientific fields related to meteorological conditions and the snow cover in mountain areas. An evaluation of the skill of S2M is also displayed, in particular through comparison to 665 independent in situ snow depth observations. Further, we describe the technical handling of this open-access dataset, available at https://doi.org/10.25326/37#v2020.2. The S2M data are provided by Météo-France – CNRS, CNRM, Centre d'Études de la Neige, through AERIS (Vernay et al., 2022).

30 citations


Journal ArticleDOI
TL;DR: In this paper , a gap-free aerosol optical depth (AOD) dataset with a daily 1.1 km resolution covering the period of 2000-2020 in China was generated, from which spatially contiguous PM2.5 and PM10 concentrations were estimated using an ensemble learning approach.
Abstract: Abstract. Developing a big data analytics framework for generating the Long-term Gap-free High-resolution Air Pollutant concentration dataset (abbreviated as LGHAP) is of great significance for environmental management and Earth system science analysis. By synergistically integrating multimodal aerosol data acquired from diverse sources via a tensor-flow-based data fusion method, a gap-free aerosol optical depth (AOD) dataset with a daily 1 km resolution covering the period of 2000–2020 in China was generated. Specifically, data gaps in daily AOD imageries from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra were reconstructed based on a set of AOD data tensors acquired from diverse satellites, numerical analysis, and in situ air quality measurements via integrative efforts of spatial pattern recognition for high-dimensional gridded image analysis and knowledge transfer in statistical data mining. To our knowledge, this is the first long-term gap-free high-resolution AOD dataset in China, from which spatially contiguous PM2.5 and PM10 concentrations were then estimated using an ensemble learning approach. Ground validation results indicate that the LGHAP AOD data are in good agreement with in situ AOD observations from the Aerosol Robotic Network (AERONET), with an R of 0.91 and RMSE equaling 0.21. Meanwhile, PM2.5 and PM10 estimations also agreed well with ground measurements, with R values of 0.95 and 0.94 and RMSEs of 12.03 and 19.56 µg m−3, respectively. The LGHAP provides a suite of long-term gap-free gridded maps with a high resolution to better examine aerosol changes in China over the past 2 decades, from which three major variation periods of haze pollution in China were revealed. Additionally, the proportion of the population exposed to unhealthy PM2.5 increased from 50.60 % in 2000 to 63.81 % in 2014 across China, which was then reduced drastically to 34.03 % in 2020. Overall, the generated LGHAP dataset has great potential to trigger multidisciplinary applications in Earth observations, climate change, public health, ecosystem assessment, and environmental management. The daily resolution AOD, PM2.5, and PM10 datasets are publicly available at https://doi.org/10.5281/zenodo.5652257 (Bai et al., 2021a), https://doi.org/10.5281/zenodo.5652265 (Bai et al., 2021b), and https://doi.org/10.5281/zenodo.5652263 (Bai et al., 2021c), respectively. Monthly and annual datasets can be acquired from https://doi.org/10.5281/zenodo.5655797 (Bai et al., 2021d) and https://doi.org/10.5281/zenodo.5655807 (Bai et al., 2021e), respectively. Python, MATLAB, R, and IDL codes are also provided to help users read and visualize these data.

29 citations


Journal ArticleDOI
TL;DR: Deng et al. as mentioned in this paper presented a comprehensive framework to process the results of an ensemble of atmospheric inversions in order to make their net ecosystem exchange (NEE) carbon dioxide (CO2) flux suitable for evaluating national greenhouse gas inventories (NGHGIs) submitted by countries to the United Nations Framework Convention on Climate Change (UNFCCC).
Abstract: Abstract. In support of the global stocktake of the Paris Agreement on climate change, this study presents a comprehensive framework to process the results of an ensemble of atmospheric inversions in order to make their net ecosystem exchange (NEE) carbon dioxide (CO2) flux suitable for evaluating national greenhouse gas inventories (NGHGIs) submitted by countries to the United Nations Framework Convention on Climate Change (UNFCCC). From inversions we also deduced anthropogenic methane (CH4) emissions regrouped into fossil and agriculture and waste emissions, as well as anthropogenic nitrous oxide (N2O) emissions. To compare inversion results with national reports, we compiled a new global harmonized database of emissions and removals from periodical UNFCCC inventories by Annex I countries, and from sporadic and less detailed emissions reports by non-Annex I countries, given by national communications and biennial update reports. No gap filling was applied. The method to reconcile inversions with inventories is applied to selected large countries covering ∼90 % of the global land carbon uptake for CO2 and top emitters of CH4 and N2O. Our method uses results from an ensemble of global inversions produced by the Global Carbon Project for the three greenhouse gases, with ancillary data. We examine the role of CO2 fluxes caused by lateral transfer processes from rivers and from trade in crop and wood products and the role of carbon uptake in unmanaged lands, both not accounted for by NGHGIs. Here we show that, despite a large spread across the inversions, the median of available inversion models points to a larger terrestrial carbon sink than inventories over temperate countries or groups of countries of the Northern Hemisphere like Russia, Canada and the European Union. For CH4, we find good consistency between the inversions assimilating only data from the global in situ network and those using satellite CH4 retrievals and a tendency for inversions to diagnose higher CH4 emission estimates than reported by NGHGIs. In particular, oil- and gas-extracting countries in central Asia and the Persian Gulf region tend to systematically report lower emissions compared to those estimated by inversions. For N2O, inversions tend to produce higher anthropogenic emissions than inventories for tropical countries, even when attempting to consider only managed land emissions. In the inventories of many non-Annex I countries, this can be tentatively attributed to a lack of reporting indirect N2O emissions from atmospheric deposition and from leaching to rivers, to the existence of natural sources intertwined with managed lands, or to an underestimation of N2O emission factors for direct agricultural soil emissions. Inversions provide insights into seasonal and interannual greenhouse gas fluxes anomalies, e.g., during extreme events such as drought or abnormal fire episodes, whereas inventory methods are established to estimate trends and multi-annual changes. As a much denser sampling of atmospheric CO2 and CH4 concentrations by different satellites coordinated into a global constellation is expected in the coming years, the methodology proposed here to compare inversion results with inventory reports (e.g., NGHGIs) could be applied regularly for monitoring the effectiveness of mitigation policy and progress by countries to meet the objective of their pledges. The dataset constructed by this study is publicly available at https://doi.org/10.5281/zenodo.5089799 (Deng et al., 2021).

28 citations


Posted ContentDOI
TL;DR: The HolVol v.1.0 database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events for the Holocene (from 9500 BCE or 11500 year BP to 1900 CE), constituting an extension of the previous record by 7000 years as discussed by the authors .
Abstract: Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is the dominant driver of natural climate variability on interannual-to-multidecadal timescales. Based on a set of continuous sulfate and sulfur records from a suite of ice cores from Greenland and Antarctica, the HolVol v.1.0 database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events for the Holocene (from 9500 BCE or 11500 year BP to 1900 CE), constituting an extension of the previous record by 7000 years. The database incorporates new-generation ice-core aerosol records with sub-annual temporal resolution and demonstrated sub-decadal dating accuracy and precision. By tightly aligning and stacking the ice-core records on the WD2014 chronology from Antarctica we resolve long-standing previous inconsistencies in the dating of ancient volcanic eruptions that arise from biased (i.e. dated too old) ice-core chronologies over the Holocene for Greenland. We reconstruct a total of 850 volcanic eruptions with injections in excess of 1 TgS, of which 329 (39 %) are located in the low latitudes with bipolar sulfate deposition, 426 (50 %) are located in the Northern Hemisphere (NH) extratropics and 88 (10 %) are located in the Southern Hemisphere (SH) extratropics. The spatial distribution of reconstructed eruption locations is in agreement with prior reconstructions for the past 2,500 years, and follows the global distribution of landmasses. In total, these eruptions injected 7410 TgS in the stratosphere, for which tropical eruptions accounted for 70 % and NH extratropics for 25 %. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the HolVol VSSI estimates, representing the first Holocene-scale reconstruction constrained by Greenland and Antarctica ice cores. These new long-term reconstructions of past VSSI and SAOD variability confirm evidence from regional volcanic eruption chronologies (e.g., from Iceland) in showing that the early Holocene (9500–7000 BCE) experienced a higher number of volcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared to the past 2,500 years. This increase coincides with the rapid retreat of ice sheets during deglaciation, providing context for potential future increases of volcanic activity in regions under projected glacier melting in the 21st century. The reconstructed VSSI and SAOD data are available at https://doi.pangaea.de/10.1594/PANGAEA.928646 (Sigl et al., 2021).

Journal ArticleDOI
TL;DR: Liu et al. as discussed by the authors proposed a novel and automatic method of combining the advantages of spectral-generalization and automatic-sample-extraction strategies, and then an accurate global 30'm impervious-surface dynamic dataset (GISD30) for 1985 to 2020 was produced using time-series Landsat imagery on the Google Earth Engine cloud computing platform.
Abstract: Abstract. Accurately mapping impervious-surface dynamics has great scientific significance and application value for research on urban sustainable development, the assessment of anthropogenic carbon emissions and global ecological-environment modeling. In this study, a novel and automatic method of combining the advantages of spectral-generalization and automatic-sample-extraction strategies was proposed, and then an accurate global 30 m impervious-surface dynamic dataset (GISD30) for 1985 to 2020 was produced using time-series Landsat imagery on the Google Earth Engine cloud computing platform. Firstly, the global training samples and corresponding reflectance spectra were automatically derived from prior global 30 m land-cover products after employing the multitemporal compositing method and relative radiometric normalization. Then, spatiotemporal adaptive classification models, trained with the migrated reflectance spectra of impervious surfaces from 2020 and transferred pervious-surface samples in each epoch for every 5∘×5∘ geographical tile, were applied to map the impervious surface in each period. Furthermore, a spatiotemporal-consistency correction method was presented to minimize the effects of independent classification errors and improve the spatiotemporal consistency of impervious-surface dynamics. Our global 30 m impervious-surface dynamic model achieved an overall accuracy of 90.1 % and a kappa coefficient of 0.865 using 23 322 global time-series validation samples. Cross-comparisons with five existing global 30 m impervious-surface products further indicated that our GISD30 dynamic product achieved the best performance in capturing the spatial distributions and spatiotemporal dynamics of impervious surfaces in various impervious landscapes. The statistical results indicated that the global impervious surface has doubled in the past 35 years, from 5.116×105 km2 in 1985 to 10.871×105 km2 in 2020, and Asia saw the largest increase in impervious surface area compared to other continents, with a total increase of 2.946×105 km2. Therefore, it was concluded that our global 30 m impervious-surface dynamic dataset is an accurate and promising product and could provide vital support in monitoring regional or global urbanization as well as in related applications. The global 30 m impervious-surface dynamic dataset from 1985 to 2020 generated in this paper is free to access at https://doi.org/10.5281/zenodo.5220816 (Liu et al., 2021b).

Journal ArticleDOI
TL;DR: In this paper , the authors presented the new global Mesoscale Eddy Trajectory Atlases (META3.1exp), which is composed of eddy identifications and trajectories produced with altimetric maps.
Abstract: Abstract. This paper presents the new global Mesoscale Eddy Trajectory Atlases (META3.1exp DT all-satellites, https://doi.org/10.24400/527896/a01-2021.001, Pegliasco et al., 2021a; and META3.1exp DT two-satellites, https://doi.org/10.24400/527896/a01-2021.002, Pegliasco et al., 2021b), composed of eddy identifications and trajectories produced with altimetric maps. The detection method used is inherited from the py-eddy-tracker (PET) algorithm developed by Mason et al. (2014), and is optimized to efficiently manage large datasets, and thus long time series. These products are an improvement on the earlier META2.0 product, which was produced by SSALTO/DUACS and distributed by AVISO+ (https://aviso.altimetry.fr, last access: 8 March 2022) with support from CNES, in collaboration with Oregon State University and support from NASA, and based on the Chelton et al. (2011) code. META3.1exp provides supplementary eddy information, such as eddy shapes, eddy edges, maximum speed contours, and mean eddy speed profiles from the center to the periphery. The tracking algorithm is based on overlapping contours, includes virtual observations, and acts as a filter with respect to the shortest trajectories. The absolute dynamic topography (ADT) field is now used for eddy detection, instead of the previous sea level anomaly (SLA) maps, in order to better represent the dynamics in the more energetic oceanic regions and in the vicinity of coasts and islands. To evaluate the impact of the changes from META2.0 to META3.1exp, a comparison methodology has been applied. The similarity coefficient (SC) is based on the ratio of the eddy overlaps to their cumulative area, and allows for extensive comparison of the different datasets in terms of geographic distribution, statistics on the main physical characteristics, changes in the lifetimes of the trajectories, etc. After evaluating the impact of each change separately, we conclude that the major differences between META3.1exp and META2.0 are due to the change in the detection algorithm. META3.1exp contains smaller eddies and trajectories lasting at least 10 d; these were not available in the META2.0 product. Nevertheless, 55 % of the structures in META2.0 are similar to META3.1exp, thereby ensuring continuity between the two products and their physical characteristics. Geographically, the eddy distributions differ mainly in the strong current regions, where the mean dynamic topography (MDT) gradients are sharp. The additional information on the eddy contours allows for more accurate collocation of mesoscale structures with data from other sources, and so META3.1exp is recommended for multi-disciplinary application.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors used a spatiotemporal gap-filling framework to generate a seamless global 1 km daily (mid-daytime and mid-nighttime) MODIS-like LST dataset from 2003 to 2020 based on standard MODIS LST products.
Abstract: Abstract. Land surface temperature (LST) is one of the most important and widely used parameters for studying land surface processes. Moderate Resolution Imaging Spectroradiometer (MODIS) LST products (e.g., MOD11A1 and MYD11A1) can provide this information with moderate spatiotemporal resolution with global coverage. However, the applications of these data are hampered because of missing values caused by factors such as cloud contamination, indicating the necessity to produce a seamless global MODIS-like LST dataset, which is still not available. In this study, we used a spatiotemporal gap-filling framework to generate a seamless global 1 km daily (mid-daytime and mid-nighttime) MODIS-like LST dataset from 2003 to 2020 based on standard MODIS LST products. The method includes two steps: (1) data pre-processing and (2) spatiotemporal fitting. In the data pre-processing, we filtered pixels with low data quality and filled gaps using the observed LST at another three time points of the same day. In the spatiotemporal fitting, first we fitted the temporal trend (overall mean) of observations based on the day of year (independent variable) in each pixel using the smoothing spline function. Then we spatiotemporally interpolated residuals between observations and overall mean values for each day. Finally, we estimated missing values of LST by adding the overall mean and interpolated residuals. The results show that the missing values in the original MODIS LST were effectively and efficiently filled with reduced computational cost, and there is no obvious block effect caused by large areas of missing values, especially near the boundary of tiles, which might exist in other seamless LST datasets. The cross-validation with different missing rates at the global scale indicates that the gap-filled LST data have high accuracies with the average root mean squared error (RMSE) of 1.88 and 1.33∘, respectively, for mid-daytime (13:30) and mid-nighttime (01:30). The seamless global daily (mid-daytime and mid-nighttime) LST dataset at a 1 km spatial resolution is of great use in global studies of urban systems, climate research and modeling, and terrestrial ecosystem studies. The data are available at Iowa State University's DataShare at https://doi.org/10.25380/iastate.c.5078492 (T. Zhang et al., 2021).

DOI
TL;DR: The HydroWASTE dataset as discussed by the authors contains 58,502 wastewater treatment plants (WWTPs) and their characteristics, including the population served, flow rate of effluents, and level of treatment of processed wastewater.
Abstract: Abstract. The main objective of wastewater treatment plants (WWTPs) is to remove pathogens, nutrients, organics, and other pollutants from wastewater. After these contaminants are partially or fully removed through physical, biological, and/or chemical processes, the treated effluents are discharged into receiving waterbodies. However, since WWTPs cannot remove all contaminants, especially those of emerging concern, they inevitably represent concentrated point sources of residual contaminant loads into surface waters. To understand the severity and extent of the impact of treated-wastewater discharges from such facilities into rivers and lakes, as well as to identify opportunities of improved management, detailed information about WWTPs is required, including (1) their explicit geospatial locations to identify the waterbodies affected and (2) individual plant characteristics such as the population served, flow rate of effluents, and level of treatment of processed wastewater. These characteristics are especially important for contaminant fate models that are designed to assess the distribution of substances that are not typically included in environmental monitoring programs. Although there are several regional datasets that provide information on WWTP locations and characteristics, data are still lacking at a global scale, especially in developing countries. Here we introduce a spatially explicit global database, termed HydroWASTE, containing 58 502 WWTPs and their characteristics. This database was developed by combining national and regional datasets with auxiliary information to derive or complete missing WWTP characteristics, including the number of people served. A high-resolution river network with streamflow estimates was used to georeference WWTP outfall locations and calculate each plant's dilution factor (i.e., the ratio of the natural discharge of the receiving waterbody to the WWTP effluent discharge). The utility of this information was demonstrated in an assessment of the distribution of treated wastewater at a global scale. Results show that 1 200 000 km of the global river network receives wastewater input from upstream WWTPs, of which more than 90 000 km is downstream of WWTPs that offer only primary treatment. Wastewater ratios originating from WWTPs exceed 10 % in over 72 000 km of rivers, mostly in areas of high population densities in Europe, the USA, China, India, and South Africa. In addition, 2533 plants show a dilution factor of less than 10, which represents a common threshold for environmental concern. HydroWASTE can be accessed at https://doi.org/10.6084/m9.figshare.14847786.v1 (Ehalt Macedo et al., 2021).

Journal ArticleDOI
TL;DR: In this paper , the authors present a state-of-the-art anthropogenic emission inventory developed for the European domain for an 18-year time series (2000-2017) at a 0.05∘ × 0.1∘ grid resolution, specifically designed to support air quality modelling.
Abstract: Abstract. This paper presents a state-of-the-art anthropogenic emission inventory developed for the European domain for an 18-year time series (2000–2017) at a 0.05∘ × 0.1∘ grid resolution, specifically designed to support air quality modelling. The main air pollutants are included: NOx, SO2, non-methane volatile organic compounds (NMVOCs), NH3, CO, PM10 and PM2.5, and also CH4. To stay as close as possible to the emissions as officially reported and used in policy assessment, the inventory uses the officially reported emission data by European countries to the UN Framework Convention on Climate Change, the Convention on Long-Range Transboundary Air Pollution and the EU National Emission Ceilings Directive as the basis where possible. Where deemed necessary because of errors, incompleteness or inconsistencies, these are replaced with or complemented by other emission data, most notably the estimates included in the Greenhouse gas Air pollution Interaction and Synergies (GAINS) model. Emissions are collected at the high sectoral level, distinguishing around 250 different sector–fuel combinations, whereafter a consistent spatial distribution is applied for Europe. A specific proxy is selected for each of the sector–fuel combinations, pollutants and years. Point source emissions are largely based on reported facility-level emissions, complemented by other sources of point source data for power plants. For specific sources, the resulting emission data were replaced with other datasets. Emissions from shipping (both inland and at sea) are based on the results from a separate shipping emission model where emissions are based on actual ship movement data, and agricultural waste burning emissions are based on satellite observations. The resulting spatially distributed emissions are evaluated against earlier versions of the dataset as well as against alternative emission estimates, which reveals specific discrepancies in some cases. Along with the resulting annual emission maps, profiles for splitting particulate matter (PM) and NMVOCs into individual components are provided, as well as information on the height profile by sector and temporal disaggregation down to the hourly level to support modelling activities. Annual grid maps are available in csv and NetCDF format (https://doi.org/10.24380/0vzb-a387, Kuenen et al., 2021).

Journal ArticleDOI
TL;DR: In this paper , the authors presented a systematic dataset of BC, OC, WSOC, and water-insoluble organic carbon (WIOC) collected across the Third Pole, based on the APCC program.
Abstract: Abstract. The Tibetan Plateau and its surroundings, also known as the Third Pole, play an important role in the global and regional climate and hydrological cycle. Carbonaceous aerosols (CAs), including black carbon (BC) and organic carbon (OC), can directly or indirectly absorb and scatter solar radiation and change the energy balance on the Earth. CAs, along with the other atmospheric pollutants (e.g., mercury), can be frequently transported over long distances into the inland Tibetan Plateau. During the last decades, a coordinated monitoring network and research program named “Atmospheric Pollution and Cryospheric Changes” (APCC) has been gradually set up and continuously operated within the Third Pole regions to investigate the linkage between atmospheric pollutants and cryospheric changes. This paper presents a systematic dataset of BC, OC, water-soluble organic carbon (WSOC), and water-insoluble organic carbon (WIOC) from aerosols (20 stations), glaciers (17 glaciers, including samples from surface snow and ice, snow pits, and 2 ice cores), snow cover (2 stations continuously observed and 138 locations surveyed once), precipitation (6 stations), and lake sediment cores (7 lakes) collected across the Third Pole, based on the APCC program. These data were created based on online (in situ) and laboratory measurements. High-resolution (daily scale) atmospheric-equivalent BC concentrations were obtained by using an Aethalometer (AE-33) in the Mt. Everest (Qomolangma) region, which can provide new insight into the mechanism of BC transportation over the Himalayas. Spatial distributions of BC, OC, WSOC, and WIOC from aerosols, glaciers, snow cover, and precipitation indicated different features among the different regions of the Third Pole, which were mostly influenced by emission sources, transport pathways, and deposition processes. Historical records of BC from ice cores and lake sediment cores revealed the strength of the impacts of human activity since the Industrial Revolution. BC isotopes from glaciers and aerosols identified the relative contributions of biomass and fossil fuel combustion to BC deposition on the Third Pole. Mass absorption cross sections of BC and WSOC from aerosol, glaciers, snow cover, and precipitation samples were also provided. This updated dataset is released to the scientific communities focusing on atmospheric science, cryospheric science, hydrology, climatology, and environmental science. The related datasets are presented in the form of excel files. BC and OC datasets over the Third Pole are available to download from the National Cryosphere Desert Data Center (https://doi.org/10.12072/ncdc.NIEER.db0114.2021; Kang and Zhang, 2021).

Journal ArticleDOI
TL;DR: Yue et al. as mentioned in this paper used hourly and daily rainfall data from 2381 stations for the period 1951-2018 to generate new R-factor and 1-in-10-year event EI30 maps for mainland China.
Abstract: Abstract. Rainfall erosivity quantifies the effect of rainfall and runoff on the rate of soil loss. Maps of rainfall erosivity are needed for erosion assessment using the Universal Soil Loss Equation (USLE) and its successors. To improve erosivity maps that are currently available, hourly and daily rainfall data from 2381 stations for the period 1951–2018 were used to generate new R-factor and 1-in-10-year event EI30 maps for mainland China (available at https://doi.org/10.12275/bnu.clicia.rainfallerosivity.CN.001; Yue et al., 2020b). One-minute rainfall data from 62 stations, of which 18 had a record length > 29 years, were used to compute the “true” rainfall erosivity against which the new R-factor and 1-in-10-year EI30 maps were assessed to quantify the improvement over the existing maps through cross-validation. The results showed that (1) existing maps underestimated erosivity for most of the south-eastern part of China and overestimated for most of the western region; (2) the new R-factor map generated in this study had a median absolute relative error of 16 % for the western region, compared to 162 % for the existing map, and 18 % for the rest of China. The new 1-in-10-year EI30 map had a median absolute relative error of 14 % for the central and eastern regions of China, compared to 21 % for the existing map (map accuracy was not evaluated for the western region where the 1 min data were limited); (3) the R-factor map was improved mainly for the western region, because of an increase in the number of stations from 87 to 150 and temporal resolution from daily to hourly; (4) the benefit of increased station density for erosivity mapping is limited once the station density reached about 1 station per 10 000 km2.

Journal ArticleDOI
TL;DR: The HolVol v.1.0 database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection events for the Holocene (from 9500 BCE or 11 500 years BP to 1900 CE) as mentioned in this paper .
Abstract: Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is the dominant driver of natural climate variability on interannual to multidecadal timescales. Based on a set of continuous sulfate and sulfur records from a suite of ice cores from Greenland and Antarctica, the HolVol v.1.0 database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events for the Holocene (from 9500 BCE or 11 500 years BP to 1900 CE), constituting an extension of the previous record by 7000 years. The database incorporates new-generation ice-core aerosol records with a sub-annual temporal resolution and a demonstrated sub-decadal dating accuracy and precision. By tightly aligning and stacking the ice-core records on the WD2014 chronology from Antarctica, we resolve long-standing inconsistencies in the dating of ancient volcanic eruptions that arise from biased (i.e., dated too old) ice-core chronologies over the Holocene for Greenland. We reconstruct a total of 850 volcanic eruptions with injections in excess of 1 teragram of sulfur (Tg S); of these eruptions, 329 (39 %) are located in the low latitudes with bipolar sulfate deposition, 426 (50 %) are located in the Northern Hemisphere extratropics (NHET) and 88 (10 %) are located in the Southern Hemisphere extratropics (SHET). The spatial distribution of the reconstructed eruption locations is in agreement with prior reconstructions for the past 2500 years. In total, these eruptions injected 7410 Tg S into the stratosphere: 70 % from tropical eruptions and 25 % from NH extratropical eruptions. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the HolVol VSSI estimates, representing the first Holocene-scale reconstruction constrained by Greenland and Antarctica ice cores. These new long-term reconstructions of past VSSI and SAOD variability confirm evidence from regional volcanic eruption chronologies (e.g., from Iceland) in showing that the Early Holocene (9500–7000 BCE) experienced a higher number of volcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared with the past 2500 years. This increase coincides with the rapid retreat of ice sheets during deglaciation, providing context for potential future increases in volcanic activity in regions under projected glacier melting in the 21st century. The reconstructed VSSI and SAOD data are available at https://doi.org/10.1594/PANGAEA.928646 (Sigl et al., 2021).

Journal ArticleDOI
TL;DR: In this article , the authors present datasets for times series of the global sea-level budget and OMB elements developed in the framework of ESA's Climate Change Initiative, and use these datasets to assess the SLB and the OMB simultaneously, using a consistent framework of uncertainty characterization.
Abstract: Abstract. Studies of the global sea-level budget (SLB) and the global ocean-mass budget (OMB) are essential to assess the reliability of our knowledge of sea-level change and its contributors. Here we present datasets for times series of the SLB and OMB elements developed in the framework of ESA's Climate Change Initiative. We use these datasets to assess the SLB and the OMB simultaneously, utilising a consistent framework of uncertainty characterisation. The time series, given at monthly sampling and available at https://doi.org/10.5285/17c2ce31784048de93996275ee976fff (Horwath et al., 2021), include global mean sea-level (GMSL) anomalies from satellite altimetry, the global mean steric component from Argo drifter data with incorporation of sea surface temperature data, the ocean-mass component from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry, the contribution from global glacier mass changes assessed by a global glacier model, the contribution from Greenland Ice Sheet and Antarctic Ice Sheet mass changes assessed by satellite radar altimetry and by GRACE, and the contribution from land water storage anomalies assessed by the global hydrological model WaterGAP (Water Global Assessment and Prognosis). Over the period January 1993–December 2016 (P1, covered by the satellite altimetry records), the mean rate (linear trend) of GMSL is 3.05 ± 0.24 mm yr−1. The steric component is 1.15 ± 0.12 mm yr−1 (38 % of the GMSL trend), and the mass component is 1.75 ± 0.12 mm yr−1 (57 %). The mass component includes 0.64 ± 0.03 mm yr−1 (21 % of the GMSL trend) from glaciers outside Greenland and Antarctica, 0.60 ± 0.04 mm yr−1 (20 %) from Greenland, 0.19 ± 0.04 mm yr−1 (6 %) from Antarctica, and 0.32 ± 0.10 mm yr−1 (10 %) from changes of land water storage. In the period January 2003–August 2016 (P2, covered by GRACE and the Argo drifter system), GMSL rise is higher than in P1 at 3.64 ± 0.26 mm yr−1. This is due to an increase of the mass contributions, now about 2.40 ± 0.13 mm yr−1 (66 % of the GMSL trend), with the largest increase contributed from Greenland, while the steric contribution remained similar at 1.19 ± 0.17 mm yr−1 (now 33 %). The SLB of linear trends is closed for P1 and P2; that is, the GMSL trend agrees with the sum of the steric and mass components within their combined uncertainties. The OMB, which can be evaluated only for P2, shows that our preferred GRACE-based estimate of the ocean-mass trend agrees with the sum of mass contributions within 1.5 times or 0.8 times the combined 1σ uncertainties, depending on the way of assessing the mass contributions. Combined uncertainties (1σ) of the elements involved in the budgets are between 0.29 and 0.42 mm yr−1, on the order of 10 % of GMSL rise. Interannual variations that overlie the long-term trends are coherently represented by the elements of the SLB and the OMB. Even at the level of monthly anomalies the budgets are closed within uncertainties, while also indicating possible origins of remaining misclosures.

Journal ArticleDOI
TL;DR: Bogena et al. as discussed by the authors presented soil moisture data from 66 cosmic-ray neutron sensors (CRNSs) in Europe (COSMOS-Europe for short) covering recent drought events.
Abstract: Abstract. Climate change increases the occurrence and severity of droughts due to increasing temperatures, altered circulation patterns, and reduced snow occurrence. While Europe has suffered from drought events in the last decade unlike ever seen since the beginning of weather recordings, harmonized long-term datasets across the continent are needed to monitor change and support predictions. Here we present soil moisture data from 66 cosmic-ray neutron sensors (CRNSs) in Europe (COSMOS-Europe for short) covering recent drought events. The CRNS sites are distributed across Europe and cover all major land use types and climate zones in Europe. The raw neutron count data from the CRNS stations were provided by 24 research institutions and processed using state-of-the-art methods. The harmonized processing included correction of the raw neutron counts and a harmonized methodology for the conversion into soil moisture based on available in situ information. In addition, the uncertainty estimate is provided with the dataset, information that is particularly useful for remote sensing and modeling applications. This paper presents the current spatiotemporal coverage of CRNS stations in Europe and describes the protocols for data processing from raw measurements to consistent soil moisture products. The data of the presented COSMOS-Europe network open up a manifold of potential applications for environmental research, such as remote sensing data validation, trend analysis, or model assimilation. The dataset could be of particular importance for the analysis of extreme climatic events at the continental scale. Due its timely relevance in the scope of climate change in the recent years, we demonstrate this potential application with a brief analysis on the spatiotemporal soil moisture variability. The dataset, entitled “Dataset of COSMOS-Europe: A European network of Cosmic-Ray Neutron Soil Moisture Sensors”, is shared via Forschungszentrum Jülich: https://doi.org/10.34731/x9s3-kr48 (Bogena and Ney, 2021).

Journal ArticleDOI
TL;DR: The VODCA2GPP dataset as mentioned in this paper uses microwave remote sensing estimates of vegetation optical depth (VOD) to estimate terrestrial gross primary production (GPP) at the global scale for the period 1988-2020.
Abstract: Abstract. Long-term global monitoring of terrestrial gross primary production (GPP) is crucial for assessing ecosystem responses to global climate change. In recent decades, great advances have been made in estimating GPP and many global GPP datasets have been published. These datasets are based on observations from optical remote sensing, are upscaled from in situ measurements, or rely on process-based models. Although these approaches are well established within the scientific community, datasets nevertheless differ significantly. Here, we introduce the new VODCA2GPP dataset, which utilizes microwave remote sensing estimates of vegetation optical depth (VOD) to estimate GPP at the global scale for the period 1988–2020. VODCA2GPP applies a previously developed carbon-sink-driven approach (Teubner et al., 2019, 2021) to estimate GPP from the Vegetation Optical Depth Climate Archive (Moesinger et al., 2020; Zotta et al., 2022​​​​​​​), which merges VOD observations from multiple sensors into one long-running, coherent data record. VODCA2GPP was trained and evaluated against FLUXNET in situ observations of GPP and compared against largely independent state-of-the-art GPP datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS), FLUXCOM, and the TRENDY-v7 process-based model ensemble. The site-level evaluation with FLUXNET GPP indicates an overall robust performance of VODCA2GPP with only a small bias and good temporal agreement. The comparisons with MODIS, FLUXCOM, and TRENDY-v7 show that VODCA2GPP exhibits very similar spatial patterns across all biomes but with a consistent positive bias. In terms of temporal dynamics, a high agreement was found for regions outside the humid tropics, with median correlations around 0.75. Concerning anomalies from the long-term climatology, VODCA2GPP correlates well with MODIS and TRENDY-v7 (Pearson's r 0.53 and 0.61) but less well with FLUXCOM (Pearson's r 0.29). A trend analysis for the period 1988–2019 did not exhibit a significant trend in VODCA2GPP at the global scale but rather suggests regionally different long-term changes in GPP. For the shorter overlapping observation period (2003–2015) of VODCA2GPP, MODIS, and the TRENDY-v7 ensemble, significant increases in global GPP were found. VODCA2GPP can complement existing GPP products and is a valuable dataset for the assessment of large-scale and long-term changes in GPP for global vegetation and carbon cycle studies. The VODCA2GPP dataset is available at the TU Data Repository of TU Wien (https://doi.org/10.48436/1k7aj-bdz35, Wild et al., 2021).

Journal ArticleDOI
TL;DR: The authors developed a set of climate-related variables at unprecedented spatiotemporal detail as a basis for environmental and ecological analyses, including the impact of recent and future climate changes on the world's ecosystems and the associated services on societies.
Abstract: Abstract. A multitude of physical and biological processes on which ecosystems and human societies depend are governed by the climate, and understanding how these processes are altered by climate change is central to mitigation efforts. We developed a set of climate-related variables at as yet unprecedented spatiotemporal detail as a basis for environmental and ecological analyses. We downscaled time series of near-surface relative humidity (hurs) and cloud area fraction (clt) under the consideration of orography and wind as well as near-surface wind speed (sfcWind) using the delta-change method. Combining these grids with mechanistically downscaled information on temperature, precipitation, and solar radiation, we then calculated vapor pressure deficit (vpd), surface downwelling shortwave radiation (rsds), potential evapotranspiration (pet), the climate moisture index (cmi), and site water balance (swb) at a monthly temporal and 30 arcsec spatial resolution globally from 1980 until 2018 (time-series variables). At the same spatial resolution, we further estimated climatological normals of frost change frequency (fcf), snow cover days (scd), potential net primary productivity (npp), growing degree days (gdd), and growing season characteristics for the periods 1981–2010, 2011–2040, 2041–2070, and 2071–2100, considering three shared socioeconomic pathways (SSP126, SSP370, SSP585) and five Earth system models (projected variables). Time-series variables showed high accuracy when validated against observations from meteorological stations and when compared to alternative products. Projected variables were also highly correlated with observations, although some variables showed notable biases, e.g., snow cover days. Together, the CHELSA-BIOCLIM+ dataset presented here (https://doi.org/10.16904/envidat.332, Brun et al., 2022) allows improvement to our understanding of patterns and processes that are governed by climate, including the impact of recent and future climate changes on the world's ecosystems and the associated services on societies.

Posted ContentDOI
TL;DR: In this paper , the authors used the MERIT Hydro Digital Elevation Model at 3 arc-sec (∼90 m at the equator) to derive a globally seamless, stan-dardised hydrographic network, the "Hydrography90m", with corresponding stream topographic and topological information.
Abstract: Abstract. The geographic distribution of streams and rivers drives a multitude of patterns and processes in hy-drology, geomorphology, geography and ecology. Therefore, a hydrographic network that accurately delineatesboth small streams and large rivers with equal precision, along with their topographic and topological proper-ties, would be indispensable in the earth sciences. However, no such hydrographic study has been publishedto date. Perhaps equally critical is the absence of small headwater streams in global hydrographies, as theseare estimated to contribute to more than 70 % of overall stream length. We aimed to fill this gap by using theMERIT Hydro Digital Elevation Model at 3 arc-sec (∼90 m at the equator) to derive a globally seamless, stan-dardised hydrographic network, the "Hydrography90m", with corresponding stream topographic and topologicalinformation. A central feature of the network is the minimal upstream contributing area, i.e. flow accumulation,of 0.05 km2 (or 5 ha) to initiate a stream channel, which allowed us to extract headwater stream channels ingreat detail. By employing a suite of GRASS GIS hydrological modules, we calculated the range-wide upstreamflow accumulation and flow direction to delineate a total of 1.6 million drainage basins, and extracted globallya total of 726 million unique stream segments with their corresponding sub-catchments. In addition, we com-puted stream topographic variables comprising stream slope, gradient, length, and curvature attributes, as wellas stream topological variables to allow for network routing and various stream order classifications. We vali-dated the spatial accuracy and flow accumulation of Hydrography90m against NHDPlus HR, an independent,national high-resolution hydrographic network dataset of the United States. Our validation shows that the newlydeveloped Hydrography90m has the highest spatial precision, and contains more headwater stream channelscompared to three other global hydrographic datasets. This inclusive approach provides a vital, and long-overduebaseline for assessing actual streamflow in headwaters, and opens new research avenues for high-resolution stud-ies of surface water worldwide. Hydrography90m thus offers significant potential to facilitate the assessment offreshwater quantity and quality, inundation risk, biodiversity and conservation, as well as resource managementobjectives in a globally comprehensive and standardised manner. We provide all the computed layers for visual-isation and download in 20° × 20° tiles at https://public.igb-berlin.de/index.php/s/od7neyLcYgi5qRp. While the entire dataset can be used directly in standard GIS applications, we recommend its seamless integration with hydrological modules in open-source QGIS and GRASS GIS software to further customise the data and derive optimal utility from it.

Journal ArticleDOI
TL;DR: In this article , the authors present a new data compilation of LULUCF fluxes of carbon dioxide on managed land, aiming at providing a consolidated view on the topic of land-based climate change mitigation efforts.
Abstract: Abstract. Despite an increasing attention on the role of land in meeting countries' climate pledges under the Paris Agreement, the range of estimates of carbon fluxes from land use, land-use change, and forestry (LULUCF) in available databases is very large. A good understanding of the LULUCF data reported by countries under the United Nations Framework Convention on Climate Change (UNFCCC) – and of the differences with other datasets based on country-reported data – is crucial to increase confidence in land-based climate change mitigation efforts. Here we present a new data compilation of LULUCF fluxes of carbon dioxide (CO2) on managed land, aiming at providing a consolidated view on the subject. Our database builds on a detailed analysis of data from national greenhouse gas inventories (NGHGIs) communicated via a range of country reports to the UNFCCC, which report anthropogenic emissions and removals based on the IPCC (Intergovernmental Panel on Climate Change) methodology. Specifically, for Annex I countries, data are sourced from annual GHG inventories. For non-Annex I countries, we compiled the most recent and complete information from different sources, including national communications, biennial update reports, submissions to the REDD+ (reducing emissions from deforestation and forest degradation) framework, and nationally determined contributions. The data are disaggregated into fluxes from forest land, deforestation, organic soils, and other sources (including non-forest land uses). The CO2 flux database is complemented by information on managed and unmanaged forest area as available in NGHGIs. To ensure completeness of time series, we filled the gaps without altering the levels and trends of the country reported data. Expert judgement was applied in a few cases when data inconsistencies existed. Results indicate a mean net global sink of −1.6 Gt CO2 yr−1 over the period 2000–2020, largely determined by a sink on forest land (−6.4 Gt CO2 yr−1), followed by source from deforestation (+4.4 Gt CO2 yr−1), with smaller fluxes from organic soils (+0.9 Gt CO2 yr−1) and other land uses (−0.6 Gt CO2 yr−1). Furthermore, we compare our NGHGI database with two other sets of country-based data: those included in the UNFCCC GHG data interface, and those based on forest resources data reported by countries to the Food and Agriculture Organization of the United Nations (FAO) and used as inputs into estimates of GHG emissions in FAOSTAT. The first dataset, once gap filled as in our study, results in a net global LULUCF sink of −5.4 Gt CO2 yr−1. The difference with the NGHGI database is in this case mostly explained by more updated and comprehensive data in our compilation for non-Annex I countries. The FAOSTAT GHG dataset instead estimates a net global LULUCF source of +1.1 Gt CO2 yr−1. In this case, most of the difference to our results is due to a much greater forest sink for non-Annex I countries in the NGHGI database than in FAOSTAT. The difference between these datasets can be mostly explained by a more complete coverage in the NGHGI database, including for non-biomass carbon pools and non-forest land uses, and by different underlying data on forest land. The latter reflects the different scopes of the country reporting to FAO, which focuses on area and biomass, and to UNFCCC, which explicitly focuses on carbon fluxes. Bearing in mind the respective strengths and weaknesses, both our NGHGI database and FAO offer a fundamental, yet incomplete, source of information on carbon-related variables for the scientific and policy communities, including under the Global stocktake. Overall, while the quality and quantity of the LULUCF data submitted by countries to the UNFCCC significantly improved in recent years, important gaps still remain. Most developing countries still do not explicitly separate managed vs. unmanaged forest land, a few report implausibly high forest sinks, and several report incomplete estimates. With these limits in mind, the NGHGI database presented here represents the most up-to-date and complete compilation of LULUCF data based on country submissions to UNFCCC. Data from this study are openly available via the Zenodo portal (Grassi et al., 2022), at https://doi.org/10.5281/zenodo.7190601.

Journal ArticleDOI
TL;DR: O'Dell et al. as discussed by the authors used the version 9 (v9) Atmospheric Carbon Observations from Space (ACOS) Level 2 Full Physics (L2FP) retrieval algorithm to derive estimates of carbon dioxide dry air mole fraction (XCO2) from the TANSO-FTS measurements collected over its first 11 years of operation.
Abstract: Abstract. The Thermal And Near infrared Sensor for carbon Observation – Fourier Transform Spectrometer (TANSO-FTS) on the Japanese Greenhouse gases Observing SATellite (GOSAT) has been returning data since April 2009. The version 9 (v9) Atmospheric Carbon Observations from Space (ACOS) Level 2 Full Physics (L2FP) retrieval algorithm (Kiel et al., 2019) was used to derive estimates of carbon dioxide (CO2) dry air mole fraction (XCO2) from the TANSO-FTS measurements collected over its first 11 years of operation. The bias correction and quality filtering of the L2FP XCO2 product were evaluated using estimates derived from the Total Carbon Column Observing Network (TCCON) as well as values simulated from a suite of global atmospheric inversion systems (models) which do not assimilate satellite-derived CO2. In addition, the v9 ACOS GOSAT XCO2 results were compared with collocated XCO2 estimates derived from NASA's Orbiting Carbon Observatory-2 (OCO-2), using the version 10 (v10) ACOS L2FP algorithm. These tests indicate that the v9 ACOS GOSAT XCO2 product has improved throughput, scatter, and bias, when compared to the earlier v7.3 ACOS GOSAT product, which extended through mid 2016. Of the 37 million soundings collected by GOSAT through June 2020, approximately 20 % were selected for processing by the v9 L2FP algorithm after screening for clouds and other artifacts. After post-processing, 5.4 % of the soundings (2×106 out of 37×106) were assigned a “good” XCO2 quality flag, as compared to 3.9 % in v7.3 (<1 ×106 out of 24×106). After quality filtering and bias correction, the differences in XCO2 between ACOS GOSAT v9 and both TCCON and models have a scatter (1σ) of approximately 1 ppm for ocean-glint observations and 1 to 1.5 ppm for land observations. Global mean biases against TCCON and models are less than approximately 0.2 ppm. Seasonal mean biases relative to the v10 OCO-2 XCO2 product are of the order of 0.1 ppm for observations over land. However, for ocean-glint observations, seasonal mean biases relative to OCO-2 range from 0.2 to 0.6 ppm, with substantial variation in time and latitude. The ACOS GOSAT v9 XCO2 data are available on the NASA Goddard Earth Science Data and Information Services Center (GES-DISC) in both the per-orbit full format (https://doi.org/10.5067/OSGTIL9OV0PN, OCO-2 Science Team et al., 2019b) and in the per-day lite format (https://doi.org/10.5067/VWSABTO7ZII4, OCO-2 Science Team et al., 2019a). In addition, a new set of monthly super-lite files, containing only the most essential variables for each satellite observation, has been generated to provide entry level users with a light-weight satellite product for initial exploration (CaltechDATA, https://doi.org/10.22002/D1.2178, Eldering, 2021). The v9 ACOS Data User's Guide (DUG) describes best-use practices for the GOSAT data (O'Dell et al., 2020). The GOSAT v9 data set should be especially useful for studies of carbon cycle phenomena that span a full decade or more and may serve as a useful complement to the shorter OCO-2 v10 data set, which begins in September 2014.

Journal ArticleDOI
TL;DR: Sindelarova et al. as mentioned in this paper presented three high-resolution global emission inventories of the main BVOC species including isoprene, monoterpenes, sesquiterpenes and methanol, acetone and ethene.
Abstract: Abstract. Biogenic volatile organic compounds (BVOCs) emitted from the terrestrial vegetation into the Earth's atmosphere play an important role in atmospheric chemical processes. Gridded information of their temporal and spatial distribution is therefore needed for proper representation of the atmospheric composition by the air quality models. Here we present three newly developed high-resolution global emission inventories of the main BVOC species including isoprene, monoterpenes, sesquiterpenes, methanol, acetone and ethene. Monthly mean and monthly averaged daily profile emissions were calculated by the Model of Emission of Gases and Aerosols from Nature (MEGANv2.1) driven by meteorological reanalyses of the European Centre for Medium-Range Weather Forecasts for the period of 2000–2019. The dataset CAMS-GLOB-BIOv1.2 is based on ERA-Interim meteorology (0.5∘ × 0.5∘ horizontal spatial resolution); the datasets CAMS-GLOB-BIOv3.0 and v3.1 were calculated with ERA5 (both 0.25∘ × 0.25∘ horizontal spatial resolution). Furthermore, European isoprene emission potential data were updated using high-resolution land cover maps and detailed information of tree species composition and emission factors from the EMEP MSC-W model system. Updated isoprene emissions are included in the CAMS-GLOB-BIOv3.1 dataset. The effect of annually changing land cover on BVOC emissions is captured by the CAMS-GLOB-BIOv3.0 as it was calculated with land cover data provided by the Climate Change Initiative of the European Space Agency (ESA-CCI). The global total annual BVOC emissions averaged over the simulated period vary between the datasets from 424 to 591 Tg (C) yr−1, with isoprene emissions from 299.1 to 440.5 Tg (isoprene) yr−1. Differences between the datasets and variation in their emission estimates provide the emission uncertainty range and the main sources of uncertainty, i.e. meteorological inputs, emission potential data and land cover description. The CAMS-GLOB-BIO time series of isoprene and monoterpenes were compared to other available data. There is a general agreement in an interannual variability in the emission estimates, and the values fall within the uncertainty range. The CAMS-GLOB-BIO datasets (CAMS-GLOB-BIOv1.2, https://doi.org/10.24380/t53a-qw03, Sindelarova et al., 2021a; CAMS-GLOB-BIOv3.0, https://doi.org/10.24380/xs64-gj42, Sindelarova et al., 2021b; CAMS-GLOB-BIOv3.1, https://doi.org/10.24380/cv4p-5f79, Sindelarova et al., 2021c) are distributed from the Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) system (https://eccad.aeris-data.fr/, last access: June 2021).

Journal ArticleDOI
TL;DR: Mahajan et al. as discussed by the authors presented an updated estimation of the bottom-up global surface seawater dimethyl sulfide (DMS) climatology, called DMS-Rev3.
Abstract: Abstract. This paper presents an updated estimation of the bottom-up global surface seawater dimethyl sulfide (DMS) climatology. This update, called DMS-Rev3, is the third of its kind and includes five significant changes from the last climatology, L11 (Lana et al., 2011), that was released about a decade ago. The first change is the inclusion of new observations that have become available over the last decade, creating a database of 873 539 observations leading to an ∼ 18-fold increase in raw data as compared to the last estimation. The second is significant improvements in data handling, processing, and filtering, to avoid biases due to different observation frequencies which result from different measurement techniques. Thirdly, we incorporate the dynamic seasonal changes observed in the geographic boundaries of the ocean biogeochemical provinces. The fourth change involves the refinement of the interpolation algorithm used to fill in the missing data. Lastly, an upgraded smoothing algorithm based on observed DMS variability length scales (VLS) helps to reproduce a more realistic distribution of the DMS concentration data. The results show that DMS-Rev3 estimates the global annual mean DMS concentration to be ∼ 2.26 nM (2.39 nM without a sea-ice mask), i.e., about 4 % lower than the previous bottom-up L11 climatology. However, significant regional differences of more than 100 % as compared to L11 are observed. The global sea-to-air flux of DMS is estimated at ∼ 27.1 TgS yr−1, which is about 4 % lower than L11, although, like the DMS distribution, large regional differences were observed. The largest changes are observed in high concentration regions such as the polar oceans, although oceanic regions that were under-sampled in the past also show large differences between revisions of the climatology. Finally, DMS-Rev3 reduces the previously observed patchiness in high productivity regions. The new climatology, along with the algorithm, can be found in the online repository: https://doi.org/10.17632/hyn62spny2.1 (Mahajan, 2021).

Journal ArticleDOI
TL;DR: In this article , the authors describe the global Level 2 SIF Lite data products for the Greenhouse Gases Observing Satellite (GOSAT), the OrbitingCarbon Observatory-2 (OCO-2), and the Orbiniting Carbon Observatory-3 (OCO-3) platforms, which are provided for each platform in daily netCDF files.
Abstract: Abstract. The retrieval of solar-induced chlorophyll fluorescence (SIF) from space is a relatively new advance in Earth observation science, having only become feasible within the last decade. Interest in SIF data has grown exponentially, and the retrieval of SIF and the provision of SIF data products has become an important and formal component of spaceborne Earth observation missions. Here, we describe the global Level 2 SIF Lite data products for the Greenhouse Gases Observing Satellite (GOSAT), the Orbiting Carbon Observatory-2 (OCO-2), and Orbiting Carbon Observatory-3 (OCO-3) platforms, which are provided for each platform in daily netCDF files (Frankenberg, 2022, https://doi.org/10.22002/D1.8771; OCO-2 Science Team et al., 2020, https://doi.org/10.5067/XO2LBBNPO010; OCO-3 Science Team et al., 2020, https://doi.org/10.5067/NOD1DPPBCXSO). We also outline the methods used to retrieve SIF and estimate uncertainty, describe all the data fields, and provide users with the background information necessary for the proper use and interpretation of the data, such as considerations of retrieval noise, sun sensor geometry, the indirect relationship between SIF and photosynthesis, and differences among the three platforms and their respective data products. OCO-2 and OCO-3 have the highest spatial resolution of spaceborne SIF retrievals to date, and the target and snapshot area mode observation modes of OCO-2 and OCO-3 are unique. These modes provide hundreds to thousands of SIF retrievals at biologically diverse global target sites during a single overpass, and provide an opportunity to better inform our understanding of canopy-scale vegetation SIF emission across biomes.

Journal ArticleDOI
TL;DR: Fyfe et al. as discussed by the authors presented the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11 700 cal yr BP).
Abstract: Abstract. Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate–human–land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11 700 cal yr BP). We describe how vegetation cover has been quantified from pollen records at a 1∘ × 1∘ spatial scale using the “Regional Estimates of VEgetation Abundance from Large Sites” (REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean–Black Sea–Caspian corridor (30–75∘ N, 25∘ W–50∘ E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (≥2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022).