scispace - formally typeset
Search or ask a question

Showing papers by "Pentao Liu published in 2016"


Journal ArticleDOI
03 Nov 2016-Nature
TL;DR: A perspective for exploring PD-1 and its ligand (PD-L1) in immunotherapy is provided, and single-cell RNA-sequencing of mouse bone marrow progenitors allows effective manipulation of the immune system for disease prevention and therapy.
Abstract: Innate lymphoid cells (ILCs) functionally resemble T lymphocytes in cytotoxicity and cytokine production but lack antigen-specific receptors, and they are important regulators of immune responses and tissue homeostasis. ILCs are generated from common lymphoid progenitors, which are subsequently committed to innate lymphoid lineages in the α-lymphoid progenitor, early innate lymphoid progenitor, common helper innate lymphoid progenitor and innate lymphoid cell progenitor compartments. ILCs consist of conventional natural killer cells and helper-like cells (ILC1, ILC2 and ILC3). Despite recent advances, the cellular heterogeneity, developmental trajectory and signalling dependence of ILC progenitors are not fully understood. Here, using single-cell RNA-sequencing (scRNA-seq) of mouse bone marrow progenitors, we reveal ILC precursor subsets, delineate distinct ILC development stages and pathways, and report that high expression of programmed death 1 (PD-1hi) marked a committed ILC progenitor that was essentially identical to an innate lymphoid cell progenitor. Our data defined PD-1hiIL-25Rhi as an early checkpoint in ILC2 development, which was abolished by deficiency in the zinc-finger protein Bcl11b but restored by IL-25R overexpression. Similar to T lymphocytes, PD-1 was upregulated on activated ILCs. Administration of a PD-1 antibody depleted PD-1hi ILCs and reduced cytokine levels in an influenza infection model in mice, and blocked papain-induced acute lung inflammation. These results provide a perspective for exploring PD-1 and its ligand (PD-L1) in immunotherapy, and allow effective manipulation of the immune system for disease prevention and therapy.

240 citations


Journal ArticleDOI
TL;DR: This work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for the understanding of ID and related syndromes.
Abstract: Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes.

120 citations


Journal ArticleDOI
TL;DR: It is shown here that the adult expression of Bcl11b is essential for survival, differentiation and functional integration of adult‐born granule cell neurons and is required for survival of pre‐existing mature neurons.
Abstract: The dentate gyrus is one of the only two brain regions where adult neurogenesis occurs. Throughout life, cells of the neuronal stem cell niche undergo proliferation, differentiation and integration into the hippocampal neural circuitry. Ongoing adult neurogenesis is a prerequisite for the maintenance of adult hippocampal functionality. Bcl11b, a zinc finger transcription factor, is expressed by postmitotic granule cells in the developing as well as adult dentate gyrus. We previously showed a critical role of Bcl11b for hippocampal development. Whether Bcl11b is also required for adult hippocampal functions has not been investigated. Using a tetracycline-dependent inducible mouse model under the control of the forebrain-specific CaMKIIα promoter, we show here that the adult expression of Bcl11b is essential for survival, differentiation and functional integration of adult-born granule cell neurons. In addition, Bcl11b is required for survival of pre-existing mature neurons. Consequently, loss of Bcl11b expression selectively in the adult hippocampus results in impaired spatial working memory. Together, our data uncover for the first time a specific role of Bcl11b in adult hippocampal neurogenesis and function.

27 citations


Journal ArticleDOI
TL;DR: It is revealed that harmine antagonizes high fat diet-induced adiposity in mice, revealing a new application of harmine in combating obesity via this off-target effect in adipocytes.
Abstract: Harmine is a natural compound possessing insulin-sensitizing effect in db/db diabetic mice. However its effect on adipose tissue browning is unknown. Here we reveal that harmine antagonizes high fat diet-induced adiposity. Harmine-treated mice gained less weight on a high fat diet and displayed increased energy expenditure and adipose tissue thermogenesis. In vitro, harmine potently induced the expression of thermogenic genes in both brown and white adipocytes, which was largely abolished by inhibition of RAC1/MEK/ERK pathway. Post-transcriptional modification analysis revealed that chromodomain helicase DNA binding protein 4 (CHD4) is a potential downstream target of harmine-mediated ERK activation. CHD4 directly binds the proximal promoter region of Ucp1, which is displaced upon treatment of harmine, thereby serving as a negative modulator of Ucp1. Thus, here we reveal a new application of harmine in combating obesity via this off-target effect in adipocytes.

15 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined whether adult B-ALL is hierarchically organized into phenotypically distinct subpopulations of leukemogenic and non-leukemogeneic cells.
Abstract: The existence and identification of leukemia-initiating cells in adult acute B lymphoblastic leukemia (B-ALL) remain controversial. We examined whether adult B-ALL is hierarchically organized into phenotypically distinct subpopulations of leukemogenic and non-leukemogenic cells or whether most B-ALL cells retain leukemogenic capacity, irrespective of their immunophenotype profiles. Our results suggest that adult B-ALL follows the stochastic stem cell model and that the expression of CD34 and CD38 in B-ALL is reversibly and not hierarchically organized.

14 citations


01 Jan 2016
TL;DR: The results suggest that adult B-ALL follows the stochastic stem cell model and that the expression of CD34 and CD38 in B-all is reversibly and not hierarchically organized.
Abstract: The existence and identification of leukemia-initiating cells in adult acute B lymphoblastic leukemia (B-ALL) remain controversial. We examined whether adult B-ALL is hierarchically organized into phenotypically distinct subpopulations of leukemogenic and non-leukemogenic cells or whether most B-ALL cells retain leukemogenic capacity, irrespective of their immunophenotype profiles. Our results suggest that adult B-ALL follows the stochastic stem cell model and that the expression of CD34 and CD38 in B-ALL is reversibly and not hierarchically organized.

3 citations


Journal ArticleDOI
TL;DR: Similar to somatic cell reprogramming to induced pluripotent stem cells, converting EpiSCs to ESCs is an epigenome-resetting process that requires over-expressing pluripotency-associated genes such as Nanog and Nr5a2.
Abstract: From mouse pre-implantation and early post-implantation embryos, stem cells at different pluripotent states can be captured in in vitro culture. For example, naive embryonic stem cells (ESC) are derived from inner cell mass (ICM) of the blastocyst, while primed epiblast stem cells (EpiSC) are captured from the post-implantation embryo epiblast. Though both ESCs and EpiSCs are pluripotent stem cells, they have distinct characters in terms of pluripotent gene expression profile, epigenetic status, metabolic pathways, growth factor requirement, and in female, the X chromosome inactivation status (1). On the other hand, these two pluripotent states are interchangeable, once switching the culture condition of ESCs to that for EpiSCs, naive ESCs convert to EpiSCs. The efficiency of converting EpiSCs to ESCs, however, is much low, which usually requires over-expressing pluripotency-associated genes such as Nanog , Klf4 , Esrrb , Tfcp2l1 and Nr5a2 (2-6). Similar to somatic cell reprogramming to induced pluripotent stem cells, converting EpiSCs to ESCs is an epigenome-resetting process. Characterizing these epigenetic barriers represents an important approach to further improve reprogramming efficiency (7).

1 citations