scispace - formally typeset
Search or ask a question

Showing papers by "R. A. Marino published in 2015"


Journal ArticleDOI
TL;DR: In this article, the authors apply the fossil record method based on spectral synthesis techniques to recover the following physical properties for each spatial resolution element in the target galaxies: the stellar mass surface density (μ_*), stellar extinction (A_V), lightweighted and mass-weighted ages (L, M), and mass weighted metallicity (M).
Abstract: Various different physical processes contribute to the star formation and stellar mass assembly histories of galaxies. One important approach to understanding the significance of these different processes on galaxy evolution is the study of the stellar population content of today's galaxies in a spatially resolved manner. The aim of this paper is to characterize in detail the radial structure of stellar population properties of galaxies in the nearby universe, based on a uniquely large galaxy sample, considering the quality and coverage of the data. The sample under study was drawn from the CALIFA survey and contains 300 galaxies observed with integral field spectroscopy. These cover a wide range of Hubble types, from spheroids to spiral galaxies, while stellar masses range from M_* ∼ 10^9 to 7 x 10^11 M_⨀. We apply the fossil record method based on spectral synthesis techniques to recover the following physical properties for each spatial resolution element in our target galaxies: the stellar mass surface density (μ_*), stellar extinction (A_V), light-weighted and mass-weighted ages ( _L, _M), and mass-weighted metallicity ( _M). To study mean trends with overall galaxy properties, the individual radial profiles are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd). We confirm that more massive galaxies are more compact, older, more metal rich, and less reddened by dust. Additionally, we find that these trends are preserved spatially with the radial distance to the nucleus. Deviations from these relations appear correlated with Hubble type: earlier types are more compact, older, and more metal rich for a given M-star, which is evidence that quenching is related to morphology, but not driven by mass. Negative gradients of _L are consistent with an inside-out growth of galaxies, with the largest _L gradients in Sb-Sbc galaxies. Further, the mean stellar ages of disks and bulges are correlated and with disks covering a wider range of ages, and late-type spirals hosting younger disks. However, age gradients are only mildly negative or flat beyond R∼2 HLR (half light radius), indicating that star formation is more uniformly distributed or that stellar migration is important at these distances. The gradients in stellar mass surface density depend mostly on stellar mass, in the sense that more massive galaxies are more centrally concentrated. Whatever sets the concentration indices of galaxies obviously depends less on quenching/morphology than on the depth of the potential well. There is a secondary correlation in the sense that at the same M_* early-type galaxies have steeper gradients. The μ_* gradients outside 1 HLR show no dependence on Hubble type. We find mildly negative _M gradients, which are shallower than predicted from models of galaxy evolution in isolation. In general, metallicity gradients depend on stellar mass, and less on morphology, hinting that metallicity is affected by both - the depth of the potential well and morphology/quenching. Thus, the largest _M gradients occur in Milky Way-like Sb-Sbc galaxies, and are similar to those measured above the Galactic disk. Sc spirals show flatter _M gradients, possibly indicating a larger contribution from secular evolution in disks. The galaxies from the sample have decreasing-outward stellar extinction; all spirals show similar radial profiles, independent from the stellar mass, but redder than E and S0. Overall, we conclude that quenching processes act in manners that are independent of mass, while metallicity and galaxy structure are influenced by mass-dependent processes.

245 citations


Journal ArticleDOI
TL;DR: In this paper, the extinction-corrected Hα luminosity is used to estimate the star formation rate (SFR) in the local universe, at least in statistically significant, optically-selected galaxy samples, once stellar continuum absorption and dust attenuation effects are accounted for.
Abstract: Context. The star formation rate (SFR) is one of the main parameters used to analyze the evolution of galaxies through time. The need for recovering the light reprocessed by dust commonly requires the use of low spatial resolution far-infrared data. Recombination line luminosities provide an alternative, although uncertain dust-extinction corrections based on narrowband imaging or long-slit spectroscopy have traditionally posed a limit to their applicability. Integral field spectroscopy (IFS) is clearly the way to overcome this kind of limitation.Aims. We obtain integrated Hα , ultraviolet (UV) and infrared (IR)-based SFR measurements for 272 galaxies from the CALIFA survey at 0.005 luminosities provide a good measure of the SFR and to shed light on the origin of the discrepancies between tracers. Updated calibrations referred to Hα are provided. The well-defined selection criteria and large statistics allow us to carry out this analysis globally and split by properties, including stellar mass and morphological type.Methods. We derive integrated, extinction-corrected Hα fluxes from CALIFA, UV surface and asymptotic photometry from GALEX and integrated WISE 22 μ m and IRAS fluxes.Results. We find that the extinction-corrected Hα luminosity agrees with the hybrid updated SFR estimators based on either UV or Hα plus IR luminosity over the full range of SFRs (0.03−20 M ⊙ yr-1 ). The coefficient that weights the amount of energy produced by newly-born stars that is reprocessed by dust on the hybrid tracers, a IR , shows a large dispersion. However, this coefficient does not became increasingly small at high attenuations, as expected if significant highly-obscured Hα emission were missed, i.e., after a Balmer decrement-based attenuation correction is applied. Lenticulars, early-type spirals, and type-2 AGN host galaxies show smaller coefficients because of the contribution of optical photons and AGN to dust heating.Conclusions. In the local Universe, the Hα luminosity derived from IFS observations can be used to measure SFR, at least in statistically-significant, optically-selected galaxy samples, once stellar continuum absorption and dust attenuation effects are accounted for. The analysis of the SFR calibrations by galaxies properties could potentially be used by other works to study the impact of different selection criteria in the SFR values derived, and to disentangle selection effects from other physically motivated differences, such as environmental or evolutionary effects.

129 citations


Journal ArticleDOI
TL;DR: In this article, the authors explore the connections between the ionization conditions and the properties of the overall underlying stellar population (ionizing or not-ionizing) in H II regions, in order to uncover the actual physical connection between them.
Abstract: Context. H II regions in galaxies are the sites of star formation, so they are special places for understanding the build-up of stellar mass in the universe. The line ratios of this ionized gas are frequently used to characterize the ionization conditions. In particular, the oxygen abundances are assumed to trace the chemical enrichment of galaxies. Aims. We explore the connections between the ionization conditions and the properties of the overall underlying stellar population (ionizing or not-ionizing) in H II regions, in order to uncover the actual physical connection between them. Methods. We use the H II regions catalog from the CALIFA survey, which is the largest in existence with more than 5000 H II regions, to explore their distribution across the classical [O III] lambda 5007/H beta vs. [N II] lambda 6583/H alpha diagnostic diagram, and the way it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation. The location of H II regions within this diagram is compared with predictions from photoionization models. Finally, we explore the dependence of the location within the diagnostic diagram on the properties of the host galaxies, the galactocentric distances, and the properties of the underlying stellar population. Results. The H II regions with weaker ionization strengths and more metal-rich are located in the bottom righthand area of the diagram. In contrast, those regions with stronger ionization strengths and more metal poor are located in the upper lefthand end of the diagram. Photoionization models per se do not predict these correlations between the parameters and the line ratios. The H II regions located in earlier-type galaxies, closer to the center and formed in older and more metal-rich regions of the galaxies are located in the bottom-right area of the diagram. On the other hand, those regions located in late-type galaxies in the outer regions of the disks and formed on younger and more metal-poor regions lie in the top lefthand area of the diagram. The two explored line ratios show strong correlations with the age and metallicity of the underlying stellar population. Conclusions. These results indicate that although H II regions are short-lived events, they are affected by the total underlying stellar population. One may say that H II regions keep a memory of the stellar evolution and chemical enrichment that have left an imprint on both the ionizing stellar population and the ionized gas.

101 citations


Journal ArticleDOI
Abstract: Context. The bar pattern speed (Ω_b) is defined as the rotational frequency of the bar, and it determines the bar dynamics. Several methods have been proposed for measuring Ω_b. The non-parametric method proposed by Tremaine & Weinberg (1984, ApJ, 282, L5; TW) and based on stellar kinematics is the most accurate. This method has been applied so far to 17 galaxies, most of them SB0 and SBa types. Aims. We have applied the TW method to a new sample of 15 strong and bright barred galaxies, spanning a wide range of morphological types from SB0 to SBbc. Combining our analysis with previous studies, we investigate 32 barred galaxies with their pattern speed measured by the TW method. The resulting total sample of barred galaxies allows us to study the dependence of Ω_b on galaxy properties, such as the Hubble type. Methods. We measured Ω_b using the TW method on the stellar velocity maps provided by the integral-field spectroscopy data from the CALIFA survey. Integral-field data solve the problems that long-slit data present when applying the TW method, resulting in the determination of more accurate Ω_b. In addition, we have also derived the ratio R of the corotation radius to the bar length of the galaxies. According to this parameter, bars can be classified as fast (R 1.4). Results. For all the galaxies, R is compatible within the errors with fast bars. We cannot rule out (at 95% level) the fast bar solution for any galaxy. We have not observed any significant trend between R and the galaxy morphological type. Conclusions. Our results indicate that independent of the Hubble type, bars have been formed and then evolve as fast rotators. This observational result will constrain the scenarios of formation and evolution of bars proposed by numerical simulations.

87 citations


Journal ArticleDOI
TL;DR: In this paper, the authors measured the major kinematic position angles (PA_kin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions.
Abstract: We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PA_kin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPA_kin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments in galaxies with morphological signatures of interaction. On the other hand, the level of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δPA_kin are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δPA_kin is larger than the typical values derived from isolated galaxies (48%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16 degrees, compared to 10% from the control sample. Our results show the impact of interactions in the motion of stellar and ionized gas as well as the wide the variety of their spatially resolved kinematic distributions. This study also provides a local Universe benchmark for kinematic studies in merging galaxies at high redshift.

82 citations


Journal ArticleDOI
TL;DR: In this paper, the authors acknowledge support from the European Research Council Starting Grant (SEDmorph) and P.I.M.A.V. Wild (P.J.
Abstract: J.M.A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). Date of Acceptance: 01/08/2014

63 citations


Journal ArticleDOI
TL;DR: In this article, the TW method was applied to a new sample of 15 strong and bright barred galaxies, spanning a wide range of morphological types from SB0 to SBbc.
Abstract: The bar pattern speed ($\Omega_{\rm b}$) is defined as the rotational frequency of the bar, and it determines the bar dynamics. Several methods have been proposed for measuring $\Omega_{\rm b}$. The non-parametric method proposed by Tremaine \& Weinberg (1984; TW) and based on stellar kinematics is the most accurate. This method has been applied so far to 17 galaxies, most of them SB0 and SBa types. We have applied the TW method to a new sample of 15 strong and bright barred galaxies, spanning a wide range of morphological types from SB0 to SBbc. Combining our analysis with previous studies, we investigate 32 barred galaxies with their pattern speed measured by the TW method. The resulting total sample of barred galaxies allows us to study the dependence of $\Omega_{\rm b}$ on galaxy properties, such as the Hubble type. We measured $\Omega_{\rm b}$ using the TW method on the stellar velocity maps provided by the integral-field spectroscopy data from the CALIFA survey. Integral-field data solve the problems that long-slit data present when applying the TW method, resulting in the determination of more accurate $\Omega_{\rm b}$. In addition, we have also derived the ratio $\cal{R}$ of the corotation radius to the bar length of the galaxies. According to this parameter, bars can be classified as fast ($\cal{R}$ $ 1.4). For all the galaxies, $\cal{R}$ is compatible within the errors with fast bars. We cannot rule out (at 95$\%$ level) the fast bar solution for any galaxy. We have not observed any significant trend between $\cal{R}$ and the galaxy morphological type. Our results indicate that independent of the Hubble type, bars have been formed and then evolve as fast rotators. This observational result will constrain the scenarios of formation and evolution of bars proposed by numerical simulations.

54 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used optical integral field spectroscopic (IFS) data from 103 nearby galaxies at different stages of the merging event, from close pairs to merger remnants provided by the CALIFA survey, to study the impact of the interaction in the specific star formation and oxygen abundance on different galactic scales.
Abstract: We use optical integral-field spectroscopic (IFS) data from 103 nearby galaxies at different stages of the merging event, from close pairs to merger remnants provided by the CALIFA survey, to study the impact of the interaction in the specific star formation and oxygen abundance on different galactic scales. To disentangle the effect of the interaction and merger from internal processes, we compared our results with a control sample of 80 non-interacting galaxies. We confirm the moderate enhancement (x 2-3 times) of specific star formation for interacting galaxies in central regions as reported by previous studies; however, the specific star formation is comparable when observed in extended regions. We find that control and interacting star-forming galaxies have similar oxygen abundances in their central regions, when normalized to their stellar masses. Oxygen abundances of these interacting galaxies seem to decrease compared to the control objects at the large aperture sizes measured in effective radius. Although the enhancement in central star formation and lower metallicities for interacting galaxies have been attributed to tidally induced inflows, our results suggest that other processes such as stellar feedback can contribute to the metal enrichment in interacting galaxies.

49 citations


Journal ArticleDOI
TL;DR: In this article, the relation between the outer-disk ionized-gas metallicity gradients and the presence of breaks in the surface brightness profiles of disk galaxies was studied. But the results were limited to the case of low-and high-mass galaxies.
Abstract: We study, for the first time in a statistically significant and well-defined sample, the relation between the outer-disk ionized-gas metallicity gradients and the presence of breaks in the surface brightness profiles of disk galaxies. SDSS g'- and r'-band surface brightness, (g'- r') color, and ionized-gas oxygen abundance profiles for 324 galaxies within the CALIFA survey are used for this purpose. We perform a detailed light-profile classification finding that 84% of our disks show down- or up-bending profiles (Type II and Type III, respectively) while the remaining 16% are well fitted by one single exponential (Type I). The analysis of the color gradients at both sides of this break shows a U-shaped profile for most Type II galaxies with an average minimum (g'- r') color of ~0.5 mag and a ionized-gas metallicity flattening associated to it only in the case of low-mass galaxies. More massive systems show a rather uniform negative metallicity gradient. The correlation between metallicity flattening and stellar mass results in p-values as low as 0.01. Independently of the mechanism having shaped the outer light profiles of these galaxies, stellar migration or a previous episode of star formation in a shrinking star-forming disk, it is clear that the imprint in their ionized-gas metallicity was different for low- and high-mass Type II galaxies. In the case of Type III disks, a positive correlation between the change in color and abundance gradient is found (the null hypothesis is ruled out with a p-value of 0.02), with the outer disks of Type III galaxies with masses $\leq$10$^{10}$ M$_{\odot}$ showing a weak color reddening or even a bluing. This is interpreted as primarily due to a mass down-sizing effect on the population of Type III galaxies having recently experienced an enhanced inside-out growth.

47 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a study of the HII regions in the galaxy NGC 6754 from a two pointing mosaic comprising 197 637 individual spectra, using integral field spectroscopy recently acquired with the MUSE instrument during its Science Verification program.
Abstract: We present a study of the HII regions in the galaxy NGC 6754 from a two pointing mosaic comprising 197 637 individual spectra, using integral field spectroscopy recently acquired with the MUSE instrument during its Science Verification program. The data cover the entire galaxy out to similar to 2 effective radii (r(e)), sampling its morphological structures with unprecedented spatial resolution for a wide-field Integral Field Unit. A complete census of the HII regions limited by the atmospheric seeing conditions was derived, comprising 396 individual ionized sources. This is one of the largest and most complete catalogues of HII regions with spectroscopic information in a single galaxy. We use this catalogue to derive the radial abundance gradient in this SBb galaxy, finding a negative gradient with a slope consistent with the characteristic value for disk galaxies recently reported. The large number of HII regions allows us to estimate the typical mixing scale length (r(mix) similar to 0.4 r(e)), which sets strong constraints on the proposed mechanisms for metal mixing in disk galaxies, like radial movements associated with bars and spiral arms. We found evidence of an azimuthal variation in the oxygen abundance that may be connected with the radial migration. These results illustrate the unique capabilities of MUSE for the study of the enrichment mechanisms in Local Universe galaxies.

46 citations


Journal ArticleDOI
TL;DR: In this article, a direct search for bar-like non-circular flows in intermediate-inclination, gas-rich disc galaxies with a range of morphological types and photometric bar classifications from the first data release (DR1) of the Calar Alto Legacy Integral Field Spectroscopy Area (CALIFA) survey was carried out.
Abstract: We carry out a direct search for bar-like non-circular flows in intermediate-inclination, gas-rich disc galaxies with a range of morphological types and photometric bar classifications from the first data release (DR1) of the Calar Alto Legacy Integral Field Spectroscopy Area (CALIFA) survey. We use the diskfit algorithm to apply rotation only and bisymmetric flow models to Hα velocity fields for 49/100 CALIFA DR1 systems that meet our selection criteria. We find satisfactory fits for a final sample of 37 systems. diskfit is sensitive to the radial or tangential components of a bar-like flow with amplitudes greater than 15 km s^-1 across at least two independent radial bins in the fit, or ∼2.25 kpc at the characteristic final sample distance of ∼75 Mpc. The velocity fields of 25/37 (67.6^+6.6_-8.5) per cent) galaxies are best characterized by pure rotation, although only 17/25 (68.0^+7.7_-10.4 per cent) of them have sufficient Hα emission near the galaxy centre to afford a search for non-circular flows. We detect non-circular flows in the remaining 12/37 (32.4(-6.6)(+8.5) per cent) galaxies. We conclude that the non-circular flows detected in 11/12 (91.7^+2.8_-14.9) per cent) systems stem from bars. Galaxies with intermediate (AB) bars are largely undetected, and our detection thresholds therefore represent upper limits to the amplitude of the non-circular flows therein. We find 2/23 (8.7^+9.6_-2.9) per cent) galaxies that show non-circular motions consistent with a bar-like flow, yet no photometric bar is evident. This suggests that in ∼10 per cent of galaxies either the existence of a bar may be missed completely in photometry or other processes may drive bar-like flows and thus secular galaxy evolution.

Journal ArticleDOI
TL;DR: In this article, the authors empirically demonstrate that the confinement of nebular emission to the galaxy periphery leads to a strong aperture bias in spectroscopic single-fiber studies of type i+ ETGs.
Abstract: Integral field spectroscopy studies based on CALIFA data have recently revealed the presence of ongoing low-level star formation (SF) in the periphery of ~10% of local early-type galaxies (ETGs), witnessing a still ongoing inside-out galaxy growth process. A distinctive property of the nebular component in these ETGs, classified i+, is a two-radial-zone structure, with the inner zone displaying LINER emission with a H\alpha equivalent width EW~1{\AA}, and the outer one (3{\AA}

Journal ArticleDOI
TL;DR: In this paper, a combined analysis of SDSS imaging and CALIFA integral field spectroscopy data was performed to detect star-forming spiral-arm-like features in the periphery of three nearby early-type galaxies.
Abstract: Based on a combined analysis of SDSS imaging and CALIFA integral field spectroscopy data, we report on the detection of faint (24 < {\mu}$_r$ mag/arcsec$^2$ < 26) star-forming spiral-arm-like features in the periphery of three nearby early-type galaxies (ETGs). These features are of considerable interest because they document the still ongoing inside-out growth of some local ETGs and may add valuable observational insight into the origin and evolution of spiral structure in triaxial stellar systems. A characteristic property of the nebular component in the studied ETGs, classified i+, is a two-radial-zone structure, with the inner zone that displays faint (EW(H\alpha)$\simeq$1A) low-ionization nuclear emission-line region (LINER) properties, and the outer one (3A

Journal ArticleDOI
TL;DR: In this paper, the radial structure of stellar population properties of galaxies in the nearby universe, based on 300 galaxies from the CALIFA survey, was analyzed. And the spectral synthesis techniques were applied to recover the stellar mass surface density, stellar extinction, light and mass-weighted ages, and massweighted metallicity, for each spatial resolution element in the target galaxies.
Abstract: This paper characterizes the radial structure of stellar population properties of galaxies in the nearby universe, based on 300 galaxies from the CALIFA survey. The sample covers a wide range of Hubble types, and galaxy stellar mass. We apply the spectral synthesis techniques to recover the stellar mass surface density, stellar extinction, light and mass-weighted ages, and mass-weighted metallicity, for each spatial resolution element in our target galaxies. To study mean trends with overall galaxy properties, the individual radial profiles are stacked in seven bins of galaxy morphology. We confirm that more massive galaxies are more compact, older, more metal rich, and less reddened by dust. Additionally, we find that these trends are preserved spatially with the radial distance to the nucleus. Deviations from these relations appear correlated with Hubble type: earlier types are more compact, older, and more metal rich for a given mass, which evidences that quenching is related to morphology, but not driven by mass. Negative gradients of ages are consistent with an inside-out growth of galaxies, with the largest ages gradients in Sb-Sbc galaxies. Further, the mean stellar ages of disks and bulges are correlated, with disks covering a wider range of ages, and late type spirals hosting younger disks. The gradients in stellar mass surface density depend mostly on stellar mass, in the sense that more massive galaxies are more centrally concentrated. There is a secondary correlation in the sense that at the same mass early type galaxies have steeper gradients. We find mildly negative metallicity gradients, shallower than predicted from models of galaxy evolution in isolation. The largest gradients occur in Sb galaxies. Overall we conclude that quenching processes act in manners that are independent of mass, while metallicity and galaxy structure are influenced by mass-dependent processes.

01 May 2015
TL;DR: In this article, a summary of the status of the on-going CALIFA survey with an em- pasis on the results that have been recently published is presented, along with the most relevant results regarding the properties of Hii regions discovered using this survey, and evidence uncovered for an inside-out growth of galaxies.
Abstract: We present here a brief summary of the status of the on-going CALIFA survey with an em- phasis on the results that have been recently published. In particular, we make a summary of the most relevant results found regarding the properties of Hii regions discovered using this survey, and the evidence uncovered for an inside-out growth of galaxies. In particular, we present an updated version of our results on the exploration of the Mass-Metallicity relation using spatial resolved information, with almost the double number of objects analysed, and an enlarged number of galaxies in the lower-mass range. We confirm our previous results that shows a lack of secondary relation with the SFR.