scispace - formally typeset
Search or ask a question

Showing papers by "Russell A. Poldrack published in 2014"


Journal ArticleDOI
TL;DR: It is proposed that the rIFC (along with one or more fronto-basal-ganglia networks) is best characterized as a brake, and this brake can be turned on in different modes and in different contexts.

1,568 citations


Journal ArticleDOI
TL;DR: The state of data sharing for task-based functional MRI (fMRI) data is outlined, with a focus on various forms of data and their relative utility for subsequent analyses.
Abstract: In the last decade, major advances have been made in the availability of shared neuroimaging data, such that there are more than 8,000 shared MRI (magnetic resonance imaging) data sets available online. Here we outline the state of data sharing for task-based functional MRI (fMRI) data, with a focus on various forms of data and their relative utility for subsequent analyses. We also discuss challenges to the future success of data sharing and highlight the ethical argument that data sharing may be necessary to maximize the contribution of human subjects.

380 citations


Journal ArticleDOI
TL;DR: Simulation results reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels, and illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code.

251 citations


Journal ArticleDOI
TL;DR: This work focuses on how the combination of study design and pattern estimator impacts the Type I error rate of the subsequent pattern analysis, and shows that collinearities in the models, along with temporal autocorrelation, can cause false positive correlations between activation pattern estimates that adversely impact the false positive rates of pattern similarity and classification analyses.

188 citations


Journal ArticleDOI
TL;DR: The value of food items can be modulated by the concurrent presentation of an irrelevant auditory cue to which subjects must make a simple motor response (i.e., cue-approach training) and the effects of this pairing on choice lasted at least 2 months after prolonged training.
Abstract: It is believed that choice behavior reveals the underlying value of goods. The subjective values of stimuli can be changed through reward-based learning mechanisms as well as by modifying the description of the decision problem, but it has yet to be shown that preferences can be manipulated by perturbing intrinsic values of individual items. Here we show that the value of food items can be modulated by the concurrent presentation of an irrelevant auditory cue to which subjects must make a simple motor response (i.e., cue-approach training). Follow-up tests showed that the effects of this pairing on choice lasted at least 2 months after prolonged training. Eye-tracking during choice confirmed that cue-approach training increased attention to the cued items. Neuroimaging revealed the neural signature of a value change in the form of amplified preference-related activity in ventromedial prefrontal cortex.

136 citations


Journal ArticleDOI
TL;DR: Functional MRI data used to predict choice behavior in subjects while they performed a naturalistic risk-taking task found choices on subsequent trials could be predicted with high accuracy when condensing each individual's brain activity to two values, indicating that choice behavior is encoded even in coarse activation patterns.
Abstract: Previous research has implicated a large network of brain regions in the processing of risk during decision making. However, it has not yet been determined if activity in these regions is predictive of choices on future risky decisions. Here, we examined functional MRI data from a large sample of healthy subjects performing a naturalistic risk-taking task and used a classification analysis approach to predict whether individuals would choose risky or safe options on upcoming trials. We were able to predict choice category successfully in 71.8% of cases. Searchlight analysis revealed a network of brain regions where activity patterns were reliably predictive of subsequent risk-taking behavior, including a number of regions known to play a role in control processes. Searchlights with significant predictive accuracy were primarily located in regions more active when preparing to avoid a risk than when preparing to engage in one, suggesting that risk taking may be due, in part, to a failure of the control systems necessary to initiate a safe choice. Additional analyses revealed that subject choice can be successfully predicted with minimal decrements in accuracy using highly condensed data, suggesting that information relevant for risky choice behavior is encoded in coarse global patterns of activation as well as within highly local activation within searchlights.

136 citations


Journal ArticleDOI
TL;DR: This article explored the experimental, behavioral, and theoretical distinctions between decision bias and response bias across perceptual and memory-based decisions and found that stimulus and response biases can be separately induced in both tasks, suggesting that the biases generalize across different types of decisions.
Abstract: The ability to adjust bias, or preference for an option, allows for great behavioral flexibility. Decision bias is also important for understanding cognition as it can provide useful information about underlying cognitive processes. Previous work suggests that bias can be adjusted in 2 primary ways: by adjusting how the stimulus under consideration is processed, or by adjusting how the response is prepared. The present study explored the experimental, behavioral, and theoretical distinctions between these biases. Different bias manipulations were employed in parallel across perceptual and memory-based decisions to assess the generality of the 2 biases. This is the 1st study to directly test whether conceptually similar bias instructions can induce dissociable bias effects across different decision tasks. The results show that stimulus and response biases can be separately induced in both tasks, suggesting that the biases generalize across different types of decisions. When analyzing behavioral data, the 2 biases can be differentiated by focusing on the time course of bias effects and/or by fitting choice reaction time models to the data. These findings have strong theoretical implications about how observed bias relates to underlying cognitive processes and how it should be used when testing cognitive theories. Guidelines are presented to help researchers identify how to induce the biases experimentally, how to dissociate them in the behavioral data, and how to quantify them using drift diffusion models. Because decision bias is pervasive across many domains of cognitive science, these guidelines can be useful for future work exploring decision bias and choice preferences.

120 citations


Journal ArticleDOI
TL;DR: A drift-diffusion model of simple decisions was fitted to stop-signal task data from go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants, and these values were used to probe fMRI data to explore individual differences in neural activation.
Abstract: The stop-signal task, in which participants must inhibit prepotent responses, has been used to identify neural systems that vary with individual differences in inhibitory control. To explore how these differences relate to other aspects of decision making, a drift-diffusion model of simple decisions was fitted to stop-signal task data from go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants. These values were used to probe fMRI data to explore individual differences in neural activation. Faster processing of the go stimulus correlated with greater activation in the right frontal pole for both go and stop trials. On stop trials, stimulus processing speed also correlated with regions implicated in inhibitory control, including the right inferior frontal gyrus, medial frontal gyrus, and BG. Individual differences in motor execution time correlated with activation of the right parietal cortex. These findings suggest a robust relationship between the speed of stimulus processing and inhibitory processing at the neural level. This model-based approach provides novel insight into the interrelationships among decision components involved in inhibitory control and raises interesting questions about strategic adjustments in performance and inhibitory deficits associated with psychopathology.

78 citations


Journal ArticleDOI
TL;DR: By establishing a link between neural similarity and psychological memory strength, this work suggests that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels.
Abstract: Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels.

77 citations


Journal ArticleDOI
TL;DR: A neural typicality measure is developed that allows us to measure which category members elicit patterns of activation that are similar to other members of their category and are thus more central in a neural space, and reveals a convergence between psychological and neural category representations.
Abstract: How categories are represented continues to be hotly debated across neuroscience and psychology. One topic that is central to cognitive research on category representation but underexplored in neurobiological research concerns the internal structure of categories. Internal structure refers to how the natural variability between-category members is coded so that we are able to determine which members are more typical or better examples of their category. Psychological categorization models offer tools for predicting internal structure and suggest that perceptions of typicality arise from similarities between the representations of category members in a psychological space. Inspired by these models, we develop a neural typicality measure that allows us to measure which category members elicit patterns of activation that are similar to other members of their category and are thus more central in a neural space. Using an artificial categorization task, we test how psychological and physical typicality contribute to neural typicality, and find that neural typicality in occipital and temporal regions is significantly correlated with subjects’ perceptions of typicality. The results reveal a convergence between psychological and neural category representations and suggest that our neural typicality measure is a useful tool for connecting psychological and neural measures of internal category structure.

59 citations


Journal ArticleDOI
TL;DR: It is claimed that when rIFC is triggered by a stop signal, unexpected event or endogenous rule, it engages a brake; i.e., it slows, pauses, or completely stops an action via one or more rI FC-based fronto-basal-ganglia networks.
Abstract: We recently provided an updated theory of the role of posterior ventral right inferior frontal cortex (hereafter rIFC) in inhibitory response control (Aron et al., 2014). We claimed that when rIFC is triggered by a stop signal, unexpected event or endogenous rule, it engages a brake; i.e., it slows, pauses, or completely stops an action via one or more rIFC-based fronto-basal-ganglia networks.

Journal ArticleDOI
TL;DR: There were no sex differences in overall accuracy or response inhibition, but women showed greater sensitivity to trial history and more flexible adjustments in speed-accuracy trade-offs in women suggest more flexibility associated with the responsive control of action.
Abstract: Sexual dimorphism in the brain and cognition is a topic of widespread interest. Many studies of sex differences have focused on visuospatial and verbal abilities, but few studies have investigated sex differences in executive functions. We examined two key components of executive function – response inhibition and response monitoring – in healthy men (n = 285) and women (n = 346) performing the Stop-signal task. In this task, participants are required to make a key press to a stimulus, unless a tone is presented at some delay following the initial stimulus presentation; on these infrequent trials, participants are instructed to inhibit their planned response. Response inhibition was assessed with an estimate of the latency needed to inhibit a response (stop-signal reaction time), and response monitoring was measured by calculating the degree to which participants adjusted their reaction times based on the immediately preceding trial (e.g., speeding following correct trials and slowing following errors). There were no sex differences in overall accuracy or response inhibition, but women showed greater sensitivity to trial history. Women sped up more than men following correct ‘Go’ trials, and slowed down more than men following errors. These small but statistically significant effects (Cohen's d = 0.25–0.3) suggest more flexible adjustments in speed–accuracy trade-offs in women and greater cognitive flexibility associated with the responsive control of action.

Journal ArticleDOI
TL;DR: Evidence is provided that deficits in inhibition-related neural activation persist in a subset of adult ADHD individuals, namely those individuals currently taking psychostimulants.
Abstract: Studies of adults with attention-deficit/hyperactivity disorder (ADHD) have suggested that they have deficient response inhibition, but findings concerning the neural correlates of inhibition in this patient population are inconsistent. We used the Stop-Signal task and functional magnetic resonance imaging (fMRI) to compare neural activation associated with response inhibition between adults with ADHD (N=35) and healthy comparison subjects (N=62), and in follow-up tests to examine the effect of current medication use and symptom severity. There were no differences in Stop-Signal task performance or neural activation between ADHD and control participants. Among the ADHD participants, however, significant differences were associated with current medication, with individuals taking psychostimulants (N=25) showing less stopping-related activation than those not currently receiving psychostimulant medication (N=10). Follow-up analyses suggested that this difference in activation was independent of symptom severity. These results provide evidence that deficits in inhibition-related neural activation persist in a subset of adult ADHD individuals, namely those individuals currently taking psychostimulants. These findings help to explain some of the disparities in the literature, and advance our understanding of why deficits in response inhibition are more variable in adult, as compared with child and adolescent, ADHD patients.

Journal ArticleDOI
TL;DR: The neural signature of task switching in the context of acquisition of new skill is examined, suggesting distinct learning mechanisms task performance and executive control as a function of learning.
Abstract: Learning novel skills involves reorganization and optimization of cognitive processing involving a broad network of brain regions. Previous work has shown asymmetric costs of switching to a well-trained task versus a poorly-trained task, but the neural basis of these differential switch costs is unclear. The current study examined the neural signature of task switching in the context of acquisition of new skill. Human participants alternated randomly between a novel visual task (mirror-reversed word reading) and a highly practiced one (plain word reading), allowing the isolation of task switching and skill set maintenance. Two scan sessions were separated by two weeks, with behavioral training on the mirror reading task in between the two sessions. Broad cortical regions, including bilateral prefrontal, parietal, and extrastriate cortices, showed decreased activity associated with learning of the mirror reading skill. In contrast, learning to switch to the novel skill was associated with decreased activity in a focal subcortical region in the dorsal striatum. Switching to the highly practiced task was associated with a non-overlapping set of regions, suggesting substantial differences in the neural substrates of switching as a function of task skill. Searchlight multivariate pattern analysis also revealed that learning was associated with decreased pattern information for mirror versus plain reading tasks in fronto-parietal regions. Inferior frontal junction and posterior parietal cortex showed a joint effect of univariate activation and pattern information. These results suggest distinct learning mechanisms task performance and executive control as a function of learning.

Posted Content
TL;DR: FDR smoothing automatically finds spatially localized regions of significant test statistics, and then relaxes the threshold of statistical significance within these regions, and tightens it elsewhere, in a manner that controls the overall false discovery rate at a given level.
Abstract: We present false discovery rate smoothing, an empirical-Bayes method for exploiting spatial structure in large multiple-testing problems. FDR smoothing automatically finds spatially localized regions of significant test statistics. It then relaxes the threshold of statistical significance within these regions, and tightens it elsewhere, in a manner that controls the overall false-discovery rate at a given level. This results in increased power and cleaner spatial separation of signals from noise. The approach requires solving a non-standard high-dimensional optimization problem, for which an efficient augmented-Lagrangian algorithm is presented. In simulation studies, FDR smoothing exhibits state-of-the-art performance at modest computational cost. In particular, it is shown to be far more robust than existing methods for spatially dependent multiple testing. We also apply the method to a data set from an fMRI experiment on spatial working memory, where it detects patterns that are much more biologically plausible than those detected by standard FDR-controlling methods. All code for FDR smoothing is publicly available in Python and R.

Journal ArticleDOI
TL;DR: The true test of these definitions will be in their community-wide adoption which will test whether they support valid inferences about psychological and neuroscientific data.
Abstract: We discuss recent progress in the development of cognitive ontologies and summarize three challenges in the coordinated development and application of these resources. Challenge 1 is to adopt a standardized definition for cognitive processes. We describe three possibilities and recommend one that is consistent with the standard view in cognitive and biomedical sciences. Challenge 2 is harmonization. Gaps and conflicts in representation must be resolved so that these resources can be combined for mark-up and interpretation of multi-modal data. Finally, Challenge 3 is to test the utility of these resources for large-scale annotation of data, search and query, and knowledge discovery and integration. As term definitions are tested and revised, harmonization should enable coordinated updates across ontologies. However, the true test of these definitions will be in their community-wide adoption which will test whether they support valid inferences about psychological and neuroscientific data.

Journal ArticleDOI
TL;DR: It is demonstrated that it is possible to influence food choices through training and that this training is associated with a decreasing need for top–down frontoparietal control.
Abstract: To overcome unhealthy behaviors, one must be able to make better choices. Changing food preferences is an important strategy in addressing the obesity epidemic and its accompanying public health risks. However, little is known about how food preferences can be effectively affected and what neural systems support such changes. In this study, we investigated a novel extensive training paradigm where participants chose from specific pairs of palatable junk food items and were rewarded for choosing the items with lower subjective value over higher value ones. In a later probe phase, when choices were made for real consumption, participants chose the lower-valued item more often in the trained pairs compared with untrained pairs. We replicated the behavioral results in an independent sample of participants while they were scanned with fMRI. We found that, as training progressed, there was decreased recruitment of regions that have been previously associated with cognitive control, specifically the left dorsolateral pFC and bilateral parietal cortices. Furthermore, we found that connectivity of the left dorsolateral pFC was greater with primary motor regions by the end of training for choices of lower-valued items that required exertion of self-control, suggesting a formation of a stronger stimulus-response association. These findings demonstrate that it is possible to influence food choices through training and that this training is associated with a decreasing need for top-down frontoparietal control. The results suggest that training paradigms may be promising as the basis for interventions to influence real-world food preferences.


Journal ArticleDOI
TL;DR: It is demonstrated that the ROS group did not automate the task as well as controls and continued to rely on controlled processing even after extensive practice, which suggests that adult ROS patients may engage in compensatory strategies to achieve normal levels of performance.
Abstract: We studied healthy, first-degree relatives of patients with schizophrenia to test the hypothesis that deficits in cognitive skill learning are associated with genetic liability to schizophrenia. Using the Weather Prediction Task (WPT), 23 healthy controls and 10 adult first-degree Relatives Of Schizophrenia (ROS) patients were examined to determine the extent to which cognitive skill learning was automated using a dual-task paradigm to detect subtle impairments in skill learning. Automatization of a skill is the ability to execute a task without the demand for executive control and effortful behavior and is a skill in which schizophrenia patients possess a deficit. ROS patients did not differ from healthy controls in accuracy or reaction time on the WPT either during early or late training on the single-task trials. In contrast, the healthy control and ROS groups were differentially affected during the dual-task trials. Our results demonstrate that the ROS group did not automate the task as well as controls and continued to rely on controlled processing even after extensive practice. This suggests that adult ROS patients may engage in compensatory strategies to achieve normal levels of performance and support the hypothesis that impaired cognitive skill learning is associated with genetic risk for schizophrenia.

Posted ContentDOI
14 Oct 2014-bioRxiv
TL;DR: NeuroVault is a web based repository that allows researchers to store, share, visualize, and decode statistical maps of the human brain and leverages the power of the Neurosynth database to provide cognitive decoding of deposited maps.
Abstract: Here we present NeuroVault — a web based repository that allows researchers to store, share, visualise, and decode statistical maps of the human brain. NeuroVault is easy to use and employs modern web technologies to provide informative visualisation of data without the need to install additional software. In addition it leverages the power of the Neurosynth database to provide cognitive decoding of deposited maps. NeuroVault is also a resource for researchers interested in conducting meta- and coactivation analyses. All of the data is exposed through a public REST API enabling other services and tools to take advantage of it.

Proceedings Article
08 Dec 2014
TL;DR: While the optimal prior is intractable in general, it is shown that approximate inference using convex subsets is tractable, and is equivalent to maximizing a submodular function subject to cardinality constraints.
Abstract: We present a general framework for constructing prior distributions with structured variables. The prior is defined as the information projection of a base distribution onto distributions supported on the constraint set of interest. In cases where this projection is intractable, we propose a family of parameterized approximations indexed by subsets of the domain. We further analyze the special case of sparse structure. While the optimal prior is intractable in general, we show that approximate inference using convex subsets is tractable, and is equivalent to maximizing a submodular function subject to cardinality constraints. As a result, inference using greedy forward selection provably achieves within a factor of (1-1/e) of the optimal objective value. Our work is motivated by the predictive modeling of high-dimensional functional neuroimaging data. For this task, we employ the Gaussian base distribution induced by local partial correlations and consider the design of priors to capture the domain knowledge of sparse support. Experimental results on simulated data and high dimensional neuroimaging data show the effectiveness of our approach in terms of support recovery and predictive accuracy.