scispace - formally typeset
Search or ask a question

Showing papers by "Sam Griffiths-Jones published in 2015"


Journal ArticleDOI
TL;DR: The first release of RNAcentral is presented, a database that collates and integrates information from an international consortium of established RNA sequence databases that contains over 8.1 million sequences.
Abstract: The field of non-coding RNA biology has been hampered by the lack of availability of a comprehensive, up-to-date collection of accessioned RNA sequences. Here we present the first release of RNAcentral, a database that collates and integrates information from an international consortium of established RNA sequence databases. The initial release contains over 8.1 million sequences, including representatives of all major functional classes. A web portal (http://rnacentral.org) provides free access to data, search functionality, cross-references, source code and an integrated genome browser for selected species.

112 citations


Journal ArticleDOI
TL;DR: It is shown that the most commonly used functional enrichment test is inappropriate for the analysis of sets of genes targeted by miRNAs, and is argued against continued use of the standard functional enrichment method for miRNA targets.
Abstract: Motivation: Many studies have investigated the differential expression of microRNAs (miRNAs) in disease states and between different treatments, tissues and developmental stages. Given a list of perturbed miRNAs, it is common to predict the shared pathways on which they act. The standard test for functional enrichment typically yields dozens of significantly enriched functional categories, many of which appear frequently in the analysis of apparently unrelated diseases and conditions. Results: We show that the most commonly used functional enrichment test is inappropriate for the analysis of sets of genes targeted by miRNAs. The hypergeometric distribution used by the standard method consistently results in significant P-values for functional enrichment for targets of randomly selected miRNAs, reflecting an underlying bias in the predicted gene targets of miRNAs as a whole. We developed an algorithm to measure enrichment using an empirical sampling approach, and applied this in a reanalysis of the gene ontology classes of targets of miRNA lists from 44 published studies. The vast majority of the miRNA target sets were not significantly enriched in any functional category after correction for bias. We therefore argue against continued use of the standard functional enrichment method for miRNA targets. Availability and implementation: A Python script implementing the empirical algorithm is freely available at http://sgjlab.org/empirical-go/. Contact: ku.ca.retsehcnam@senoj-shtiffirg.mas or ku.ca.retsehcnam@bmal.eninaj Supplementary information: Supplementary data are available at Bioinformatics online.

107 citations


Journal ArticleDOI
30 Mar 2015-PLOS ONE
TL;DR: In this paper, a large-scale bioinformatics annotation of non-coding RNA loci in 48 avian genomes is presented, using probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome.
Abstract: Here we present the results of a large-scale bioinformatics annotation of non-coding RNA loci in 48 avian genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome. We supplement these annotations with predictions from the tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase. We identify 34 lncRNA-associated loci that are conserved between birds and mammals and validate 12 of these in chicken. We report several intriguing cases where a reported mammalian lncRNA, but not its function, is conserved. We also demonstrate extensive conservation of classical ncRNAs (e.g., tRNAs) and more recently discovered ncRNAs (e.g., snoRNAs and miRNAs) in birds. Furthermore, we describe numerous “losses” of several RNA families, and attribute these to either genuine loss, divergence or missing data. In particular, we show that many of these losses are due to the challenges associated with assembling avian microchromosomes. These combined results illustrate the utility of applying homology-based methods for annotating novel vertebrate genomes.

16 citations


Posted ContentDOI
22 Apr 2015-bioRxiv
TL;DR: The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon.
Abstract: MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive time intervals covering the embryonic development of the short germband model organism, the red flour beetle Tribolium castaneum. We analysed the evolution and temporal expression of the microRNA complement, and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3′-end non-template oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved phenomenon in insects, but the number and sequences of microRNAs involved in this process have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon.

4 citations


Posted ContentDOI
27 Nov 2015-bioRxiv
TL;DR: Overall, these data support the notion that some introns may have been maintained in the genome because they harbour functional ncRNAs and are contributing to phenotype and intron retention in yeast.
Abstract: The Saccharomyces cerevisiae genome has undergone extensive intron loss during its evolutionary history. It has been suggested that the few remaining introns (in only 5% of protein-coding genes) are retained because of their impact on function under stress conditions. Here, we explore the possibility that novel non-coding RNA structures (ncRNAs) are embedded within intronic sequences and are contributing to phenotype and intron retention in yeast. We employed de novo RNA structure prediction tools to screen intronic sequences in S. cerevisiae and 36 other fungi. We identified and validated 19 new intronic RNAs via RNAseq and RT-PCR. Contrary to common belief that excised introns are rapidly degraded, we found that, in six cases, the excised introns were maintained intact in the cells. In other two cases we showed that the ncRNAs were further processed from their introns. RNAseq analysis confirmed higher expression of introns in the ribosomial protein genes containing predicted RNA structures. We deleted the novel intronic RNA structure within the GLC7 intron and showed that this predicted ncRNA, rather than the intron itself, is responsible for the cell???s ability to respond to salt stress. We also showed a direct association between the presence of the intronic ncRNA and GLC7 expression. Overall, these data support the notion that some introns may have been maintained in the genome because they harbour functional ncRNAs.