scispace - formally typeset
S

Stephen J. Elledge

Researcher at Brigham and Women's Hospital

Publications -  423
Citations -  121451

Stephen J. Elledge is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: DNA damage & DNA repair. The author has an hindex of 162, co-authored 406 publications receiving 112878 citations. Previous affiliations of Stephen J. Elledge include Harvard University & Kyushu University.

Papers
More filters
Journal ArticleDOI

The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases

TL;DR: In this article, an improved two-hybrid system was employed to isolate human genes encoding Cdk-interacting proteins (Cips) and found that CIP1 is a potent, tight-binding inhibitor of Cdks and can inhibit the phosphorylation of Rb by cyclin A-Cdk2.
Journal ArticleDOI

The DNA Damage Response: Making It Safe to Play with Knives

TL;DR: This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals.
Journal ArticleDOI

The DNA damage response: putting checkpoints in perspective

TL;DR: The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development, and this work has shown that direct activation of DNA repair networks is needed to correct this problem.
Journal ArticleDOI

ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage

TL;DR: A large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR is performed and more than 900 regulated phosphorylation sites encompassing over 700 proteins are identified.
Journal ArticleDOI

Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA Complexes

TL;DR: The data suggest that RPA-coated ssDNA is the critical structure at sites of DNA damage that recruits the ATR-ATRIP complex and facilitates its recognition of substrates for phosphorylation and the initiation of checkpoint signaling.