scispace - formally typeset
Search or ask a question

Showing papers by "Suresh K. Rayala published in 2007"


Journal ArticleDOI
TL;DR: IGF-IR was overexpression, the functional heterodimerization of IGF-IR and EGFR, and effective therapeutic targeting of these receptors in human head and neck cancer xenografts are found.
Abstract: Purpose: Insulin-like growth factor type I receptor (IGF-IR) plays critical roles in epithelial cancer cell development, proliferation, motility, and survival, and new therapeutic agents targeting IGF-IR are in development. Another receptor tyrosine kinase, the epidermal growth factor receptor (EGFR), is an established therapeutic target in head and neck cancer and IGF-IR/EGFR heterodimerization has been reported in other epithelial cancers. The present study was undertaken to determine the effects of anti–IGF-IR therapeutic targeting on cell signaling and cancer cell phenotypes in squamous cell carcinomas of the head and neck (SCCHN). Experimental Design: The therapeutic efficacy of the human anti–IGF-IR antibody IMC-A12 alone and in combination with the EGFR blocking antibody cetuximab (C225) was tested in SCCHN cell lines and in tumor xenografts. Results: IGF-IR was overexpressed in human head and neck cancer cell lines and tumors. Pretreatment of serum-starved 183A or TU159 SCCHN cell lines with A12 (10 μg/mL) blocked IGF-stimulated activation of IGF-IR, insulin receptor substrate (IRS)-1 and IRS-2, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase. A12 induced G 0 -G 1 cell cycle arrest and blocked cell growth, motility, and anchorage-independent growth. Stimulation of head and neck cancer cells with either IGF or EGF resulted in IGF-IR and EGFR heterodimerization, but only IGF caused activating phosphorylation of both receptors. Combined treatment with A12 and the EGFR blocking antibody C225 was more effective at reducing cell proliferation and migration than either agent alone. Finally, TU159 tongue cancer cell xenografts grown in athymic nude mice were treated thrice weekly for 4 weeks with vehicle, A12 (40 mg/kg i.p.), C225 (40 mg/kg i.p.), or both agents ( n = 8 mice per group; 2 tumors per mouse). Linear regression slope analysis showed significant differences in median tumor volume over time between all three treatment groups and the control group. Complete regression was seen in 31% (A12), 31% (C225), and 44% (A12 + C225) of tumors. Conclusion: Here we found the overexpression of IGF-IR, the functional heterodimerization of IGF-IR and EGFR, and effective therapeutic targeting of these receptors in human head and neck cancer xenografts.

137 citations


Journal ArticleDOI
TL;DR: The principle that a single coregulator can function as a signal-dependent and coordinated regulator of transcription, splicing, and translation is established.
Abstract: Transcription, splicing, and translation are potentially coordinately regulatable in a temporospatial-dependent manner, although supporting experimental evidence for this notion is scarce. Yeast two-hybrid screening of a mammary gland cDNA library with human p21-activated kinase 1 (Pak1) as bait identified polyC-RNA-binding protein 1 (PCBP1), which controls translation from mRNAs containing the DICE (differentiation control element). Mitogenic stimulation of human cells phosphorylated PCBP1 on threonines 60 and 127 in a Pak1-sensitive manner. Pak1-dependent phosphorylation of PCBP1 released its binding and translational inhibition from a DICE-minigene. Overexpression of PCBP1 also inhibited the translation of the endogenous L1 cell adhesion molecule mRNA, which contains two DICE motifs in the 3′ untranslated region. We also found that Pak1 activation led to an increased nuclear retention of PCBP1, recruitment to the eukaryotic translation initiation factor 4E (eIF4E) promoter, and stimulation of eIF4E expression in a Pak1-sensitive manner. Moreover, mitogenic stimulation promoted Pak1- and PCBP1-dependent alternative splicing and exon inclusion from a CD44 minigene. The alternative splicing functions of PCBP1 were in turn mediated by its intrinsic interaction with Caper α, a U2 snRNP auxiliary factor-related protein previously implicated in RNA splicing. These findings establish the principle that a single coregulator can function as a signal-dependent and coordinated regulator of transcription, splicing, and translation.

101 citations


Journal ArticleDOI
TL;DR: Findings reveal a previously unrecognized role for the MTA1 as an upstream modifier of Six3 and indicate that Six3 is a direct stimulator of rhodopsin expression, thus revealing a putative role forThe MTA1/Six3/rhodopsIn pathway in vertebrate eye.
Abstract: Here, we provide gain-of-function, loss-of function, and molecular evidence supporting genetic interactions between metastasis associated protein 1 (MTA1) and Six3 and between Six3 and rhodopsin. We discovered that MTA1 physically interacts with the Six3 chromatin in a histone deacetylase-dependent manner, leading to transcriptional suppression of the Six3 gene. MTA1 is also a Six3-interacting corepressor that contributes to a self-negative regulation of Six3 transcription by Six3. In contrast, deletion of the MTA1 alleles in murine embryonic fibroblasts or its knockdown in rat retinal ganglion cells stimulates Six3 expression. MTA1 inactivation in the MTA1-null mice results in an elevated Six3 level and proliferation of the retina cells with no obvious abnormities in eye formation. However, unexpectedly, we discovered an enhanced recruitment of Six3 to the rhodopsin chromatin in retina from the MTA1-null mice; Six3's homeodomain interacts with specific DNA elements in the rhodopsin promoter to stimulate its transcription, resulting in increased rhodopsin expression. Further, in holoprosencephaly patients, Six3 protein with a naturally occurring deletion mutation in the helix 3 of the homeodomain does not bind to rhodopsin DNA or stimulate rhodopsin transcription, implying a potential defective rhodopsin pathway in the affected holoprosencephaly patients. Further Six3 cooperates with Crx or NRL in stimulating transcription from the rhodopsin-luc. These findings reveal a previously unrecognized role for the MTA1 as an upstream modifier of Six3 and indicate that Six3 is a direct stimulator of rhodopsin expression, thus revealing a putative role for the MTA1/Six3/rhodopsin pathway in vertebrate eye. MTA1 transcription repressor histone deacetylase

65 citations


Journal ArticleDOI
TL;DR: It is found that a signaling kinase, p21-activated kinase-1 (Pak1), interacts with and phosphorylates ESE-1 and discovered that Ese-1 functions are coordinately regulated by Pak1 phosphorylation and β-TrCP-dependent ubiquitin-proteasome pathways.

43 citations


Journal ArticleDOI
TL;DR: Investigation of the role of PELP1 in resveratrol-induced autophagy in lung cancer and salivary gland adenocarcinoma cell lines identified P ELP1 for the first time in autophagosomes, implying that both PelP1 and HRS reallocate to autophosomes in response to resver atrol treatment, which might be important in the process of autophaging in the cancer cells.
Abstract: Resveratrol, a well-established phytoestrogen and chemopreventive agent, has gained much attention among oncologists because it can act as both estrogen receptor agonist and antagonist, depending on dosage and cell context. It is increasingly accepted that steroidal receptor coregulators may also function in the cytoplasmic compartment. Deregulation and altered localization of these coregulators could influence target gene expression and participate in the development of hormone-responsive cancers. Proline-, glutamic acid-, and leucine-rich protein-1 (PELP1), a novel estrogen receptor (ER) coactivator, plays an important role in the genomic and nongenomic actions of ER. Furthermore, recent studies have shown that differential compartmentalization of PELP1 could be crucial in modulating sensitivity to tamoxifen. In this study, we investigated the role of PELP1 in resveratrol-induced autophagy in lung cancer and salivary gland adenocarcinoma cell lines. Resveratrol reversibly inhibited the growth of these cancer cell lines and induced autophagy, as evidenced by microtubule-associated protein 1 light chain 3 (LC3) up-regulation in a time-dependent and 3-methyladenine-sensitive manner. Confocal microscopic analysis showed that resveratrol induced PELP1 accumulation in autophagosomes with green fluorescent protein-LC3. The intermediary molecule involved in PELP1 accumulation in resveratrol-induced autophagosomes is hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a trafficking molecule that binds to PELP1. These results identify PELP1 for the first time in autophagosomes, implying that both PELP1 and HRS reallocate to autophagosomes in response to resveratrol treatment, which might be important in the process of autophagy in the cancer cells.

39 citations


Journal ArticleDOI
TL;DR: TCoB is identified as the third cytoskeleton protein to be nitrated and a previously undescribed mechanism, whereby growth factor signaling may coordinately integrate nitric oxide signaling in the regulation of microtubule dynamics is suggested.
Abstract: Tubulin cofactor B (TCoB) plays an important role in microtubule dynamics by facilitating the dimerization of α- and β-tubulin. Recent evidence suggests that p21-activated kinase 1 (Pak1), a major signaling nodule in eukaryotic cells, phosphorylates TCoB on Ser-65 and Ser-128 and plays an essential role in microtubule regrowth. However, to date, no upstream signaling molecules have been identified to antagonize the functions of TCoB, which might help in maintaining the equilibrium of microtubules. Here, we discovered that TCoB is efficiently nitrated, mainly on Tyr-64 and Tyr-98, and nitrated-TCoB attenuates the synthesis of new microtubules. In addition, we found that nitration of TCoB antagonizes signaling-dependent phosphorylation of TCoB, whereas optimal nitration of TCoB requires the presence of functional Pak1 phosphorylation sites, thus providing a feedback mechanism to regulate phosphorylation-dependent MT regrowth. Together these findings identified TCoB as the third cytoskeleton protein to be nitrated and suggest a previously undescribed mechanism, whereby growth factor signaling may coordinately integrate nitric oxide signaling in the regulation of microtubule dynamics.

35 citations


Journal ArticleDOI
TL;DR: In this paper, the P21-activated kinase 1 (PAK1) function in the nucleus of breast cancer cells was found to be associated with the ability of PAK1 to phosphorylate ER-alpha on serine 305, accompanied by secondary activation of serine 118.

22 citations