Showing papers in "Journal of Biological Chemistry in 2007"
TL;DR: It is demonstrated that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation and p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.
Abstract: Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic, toxic, and degenerative diseases. Here we show for the first time a direct interaction between p62 and the autophagic effector proteins LC3A and -B and the related gamma-aminobutyrate receptor-associated protein and gamma-aminobutyrate receptor-associated-like proteins. The binding is mediated by a 22-residue sequence of p62 containing an evolutionarily conserved motif. To monitor the autophagic sequestration of p62- and LC3-positive bodies, we developed a novel pH-sensitive fluorescent tag consisting of a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive green fluorescent proteins. This approach revealed that p62- and LC3-positive bodies are degraded in autolysosomes. Strikingly, even rather large p62-positive inclusion bodies (2 microm diameter) become degraded by autophagy. The specific interaction between p62 and LC3, requiring the motif we have mapped, is instrumental in mediating autophagic degradation of the p62-positive bodies. We also demonstrate that the previously reported aggresome-like induced structures containing ubiquitinated proteins in cytosolic bodies are dependent on p62 for their formation. In fact, p62 bodies and these structures are indistinguishable. Taken together, our results clearly suggest that p62 is required both for the formation and the degradation of polyubiquitin-containing bodies by autophagy.
3,676 citations
TL;DR: A pathway whereby cytokines regulate THi differentiation through a selective STAT transcription factor that functions to regulate lineage-specific gene expression is demonstrated.
Abstract: Interleukin-17 (IL-17)-producing helper T (TH) cells, named as THIL-17, TH17, or inflammatory TH (THi), have been recently identified as a novel effector lineage. However, how cytokine signals mediate THi differentiation is unclear. We found that IL-6 functioned to up-regulate IL-23R and that IL-23 synergized with IL-6 in promoting THi generation. STAT3, activated by both IL-6 and IL-23, plays a critical role in THi development. A hyperactive form of STAT3 promoted THi development, whereas this differentiation process was greatly impaired in STAT3-deficient T cells. Moreover, STAT3 regulated the expression of retinoic acid receptor-related orphan receptor γ-T (RORγt), a THi-specific transcriptional regulator; STAT3 deficiency impaired RORγt expression and led to elevated expression of T-box expressed in T cells (T-bet) and Forkhead box P3 (Foxp3). Our data thus demonstrate a pathway whereby cytokines regulate THi differentiation through a selective STAT transcription factor that functions to regulate lineage-specific gene expression.
1,407 citations
TL;DR: This research presents a new probabilistic approach to cell reprograming that allows us to assess the importance of immune checkpoints in the immune response to E.coli.
Abstract: Published, JBC Papers in Press, May 14, 2007, DOI 10.1074/jbc.R700016200 Christian Schindler, David E. Levy, and Thomas Decker From the Departments of Microbiology and Medicine, Columbia University, New York, New York 10032, Departments of Pathology and Microbiology, New York University School of Medicine, New York, New York 10016, and Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University of Vienna, Dr. Bohr-Gasse 9, A1030 Vienna, Austria
1,163 citations
TL;DR: Evidence that aquaporins can channel hydrogen peroxide (H2O2) through specific members of the aquaporin family is presented, the first molecular genetic evidence for the diffusion of H2 O2 through specificMembers of the Aquaporin Family is presented.
Abstract: The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.
1,154 citations
TL;DR: The best understood system for the transport of macromolecules between the cytoplasm and the nucleus is the classical nuclear import pathway and a bioinformatics approach is taken to analyze the likely prevalence of this system in vivo.
Abstract: The best understood system for the transport of macromolecules between the cytoplasm and the nucleus is the classical nuclear import pathway. In this pathway, a protein containing a classical basic nuclear localization signal (NLS) is imported by a heterodimeric import receptor consisting of the β-karyopherin importin β, which mediates interactions with the nuclear pore complex, and the adaptor protein importin α, which directly binds the classical NLS. Here we review recent studies that have advanced our understanding of this pathway and also take a bioinformatics approach to analyze the likely prevalence of this system in vivo. Finally, we describe how a predicted NLS within a protein of interest can be confirmed experimentally to be functionally important.
1,132 citations
TL;DR: Recent advances in PGE receptor research are reviewed, including studies on knock-out mice deficient in each EP subtype have defined PGE2 actions mediated by each subtype and identified the role eachEP subtype plays in various physiological and pathophysiological responses.
Abstract: Prostaglandin (PG) E2 exerts its actions by acting on a group of G-protein-coupled receptors (GPCRs). There are four GPCRs responding to PGE2 designated subtypes EP1, EP2, EP3, and EP4 and multiple splicing isoforms of the subtype EP3. The EP subtypes exhibit differences in signal transduction, tissue localization, and regulation of expression. This molecular and biochemical heterogeneity of PGE receptors leads to PGE2 being the most versatile prostanoid. Studies on knock-out mice deficient in each EP subtype have defined PGE2 actions mediated by each subtype and identified the role each EP subtype plays in various physiological and pathophysiological responses. Here we review recent advances in PGE receptor research.
1,124 citations
TL;DR: Two-dimensional differentiation in-gel electrophoresis of tumors treated with anti-mir-21 and identified the tumor suppressor tropomyosin 1 (TPM1) as a potential mir-21 target found that down-regulation of TPM1 by mir- 21 may explain, at least in part, why suppression of mir-23 can inhibit tumor growth, further supporting the notion that mir-20 functions as an oncogene.
Abstract: MicroRNAs are small noncoding RNA molecules that control expression of target genes. Our previous studies show that mir-21 is overexpressed in tumor tissues compared with the matched normal tissues. Moreover, suppression of mir-21 by antisense oligonucleotides inhibits tumor cell growth both in vitro and in vivo. However, it remains largely unclear as to how mir-21 affects tumor growth, because our understanding of mir-21 targets is limited. In this study, we performed two-dimensional differentiation in-gel electrophoresis of tumors treated with anti-mir-21 and identified the tumor suppressor tropomyosin 1 (TPM1) as a potential mir-21 target. In agreement with this, there is a putative mir-21 binding site at the 3'-untranslated region (3'-UTR) of TPM1 variants V1 and V5. Thus, we cloned the 3'-UTR of TPM1 into a luciferase reporter and found that although mir-21 down-regulated the luciferase activity, anti-mir-21 up-regulated it. Moreover, deletion of the mir-21 binding site abolished the effect of mir-21 on the luciferase activity, suggesting that this mir-21 binding site is critical. Western blot with the cloned TPM1-V1 plus the 3'-UTR indicated that TPM1 protein level was also regulated by mir-21, whereas real-time quantitative reverse transcription-PCR revealed no difference at the mRNA level, suggesting translational regulation. Finally, overexpression of TPM1 in breast cancer MCF-7 cells suppressed anchorage-independent growth. Thus, down-regulation of TPM1 by mir-21 may explain, at least in part, why suppression of mir-21 can inhibit tumor growth, further supporting the notion that mir-21 functions as an oncogene.
1,115 citations
TL;DR: Results suggest that phosphorylation of Drp1 on Ser-585 promotes mitochondrial fission in mitotic cells, and exogenous expression of unphosphorylated mutantDrp1S585A led to reduced mitotic mitochondrial fragmentation.
Abstract: Organelles are inherited to daughter cells beyond dynamic changes of the membrane structure during mitosis. Mitochondria are dynamic entities, frequently dividing and fusing with each other, during which dynamin-related GTPase Drp1 is required for the fission reaction. In this study, we analyzed mitochondrial dynamics in mitotic mammalian cells. Although mitochondria in interphase HeLa cells are long tubular network structures, they are fragmented in early mitotic phase, and the filamentous network structures are subsequently reformed in the daughter cells. In marked contrast, tubular mitochondrial structures are maintained during mitosis in Drp1 knockdown cells, indicating that the mitochondrial fragmentation in mitosis requires mitochondrial fission by Drp1. Drp1 was specifically phosphorylated in mitosis by Cdk1/cyclin B on Ser-585. Exogenous expression of unphosphorylated mutant Drp1S585A led to reduced mitotic mitochondrial fragmentation. These results suggest that phosphorylation of Drp1 on Ser-585 promotes mitochondrial fission in mitotic cells.
1,039 citations
TL;DR: Results indicate that the Atg12-Atg5 conjugate is a ubiquitin-protein ligase (E3)-like enzyme for Atg8-PE conjugation reaction, distinctively promoting protein-lipid conjugations.
Abstract: Autophagy is a bulk degradation process in eukaryotic cells; autophagosomes enclose cytoplasmic components for degradation in the lysosome/vacuole. Autophagosome formation requires two ubiquitin-like conjugation systems, the Atg12 and Atg8 systems, which are tightly associated with expansion of autophagosomal membrane. Previous studies have suggested that there is a hierarchy between these systems; the Atg12 system is located upstream of the Atg8 system in the context of Atg protein organization. However, the concrete molecular relationship is unclear. Here, we show using an in vitro Atg8 conjugation system that the Atg12-Atg5 conjugate, but not unconjugated Atg12 or Atg5, strongly enhances the formation of the other conjugate, Atg8-PE. The Atg12-Atg5 conjugate promotes the transfer of Atg8 from Atg3 to the substrate, phosphatidylethanolamine (PE), by stimulating the activity of Atg3. We also show that the Atg12-Atg5 conjugate interacts with both Atg3 and PE-containing liposomes. These results indicate that the Atg12-Atg5 conjugate is a ubiquitin-protein ligase (E3)-like enzyme for Atg8-PE conjugation reaction, distinctively promoting protein-lipid conjugation.
1,033 citations
TL;DR: It is shown that trehalose also protects cells against subsequent pro-apoptotic insults via the mitochondrial pathway, which may be relevant to the treatment of HD and related diseases, where the mutant proteins are autophagy substrates.
Abstract: Trehalose, a disaccharide present in many non-mammalian species, protects cells against various environmental stresses. Whereas some of the protective effects may be explained by its chemical chaperone properties, its actions are largely unknown. Here we report a novel function of trehalose as an mTOR-independent autophagy activator. Trehalose-induced autophagy enhanced the clearance of autophagy substrates like mutant huntingtin and the A30P and A53T mutants of α-synuclein, associated with Huntington disease (HD) and Parkinson disease (PD), respectively. Furthermore, trehalose and mTOR inhibition by rapamycin together exerted an additive effect on the clearance of these aggregate-prone proteins because of increased autophagic activity. By inducing autophagy, we showed that trehalose also protects cells against subsequent pro-apoptotic insults via the mitochondrial pathway. The dual protective properties of trehalose (as an inducer of autophagy and chemical chaperone) and the combinatorial strategy with rapamycin may be relevant to the treatment of HD and related diseases, where the mutant proteins are autophagy substrates.
1,024 citations
TL;DR: The results show that FFAs can activate CD11c+ myeloid proinflammatory cells via TLR2/4 and JNK signaling pathways, thereby promoting inflammation and subsequent cellular insulin resistance.
Abstract: Obesity and type 2 diabetes are characterized by decreased insulin sensitivity, elevated concentrations of free fatty acids (FFAs), and increased macrophage infiltration in adipose tissue (AT). Here, we show that FFAs can cause activation of RAW264.7 cells primarily via the JNK signaling cascade and that TLR2 and TLR4 are upstream of JNK and help transduce FFA proinflammatory signals. We also demonstrate that F4/80(+)CD11b(+)CD11c(+) bone marrow-derived dendritic cells (BMDCs) have heightened proinflammatory activity compared with F4/80(+)CD11b(+)CD11c(-) bone marrow-derived macrophages and that the proinflammatory activity and JNK phosphorylation of BMDCs, but not bone marrow-derived macrophages, was further increased by FFA treatment. F4/80(+)CD11b(+)CD11c(+) cells were found in AT, and the proportion and number of these cells in AT is increased in ob/ob mice and by feeding wild type mice a high fat diet for 1 and 12 weeks. AT F4/80(+)CD11b(+)CD11c(+) cells express increased inflammatory markers compared with F4/80(+)CD11b(+)CD11c(-) cells, and FFA treatment increased inflammatory responses in these cells. In addition, we found that CD11c expression is increased in skeletal muscle of high fat diet-fed mice and that conditioned medium from FFA-treated wild type BMDCs, but not TLR2/4 DKO BMDCs, can induce insulin resistance in L6 myotubes. Together our results show that FFAs can activate CD11c(+) myeloid proinflammatory cells via TLR2/4 and JNK signaling pathways, thereby promoting inflammation and subsequent cellular insulin resistance.
TL;DR: This response provides a pathologically specific mechanism for the therapeutic action of memantine, indicates a role for ROS dysregulation in ADDL-induced cognitive impairment, and supports the unifying hypothesis that ADDLs play a central role in AD pathogenesis.
Abstract: Oxidative stress is a major aspect of Alzheimer disease (AD) pathology We have investigated the relationship between oxidative stress and neuronal binding of Abeta oligomers (also known as ADDLs) ADDLs are known to accumulate in brain tissue of AD patients and are considered centrally related to pathogenesis Using hippocampal neuronal cultures, we found that ADDLs stimulated excessive formation of reactive oxygen species (ROS) through a mechanism requiring N-methyl-d-aspartate receptor (NMDA-R) activation ADDL binding to neurons was reduced and ROS formation was completely blocked by an antibody to the extracellular domain of the NR1 subunit of NMDA-Rs In harmony with a steric inhibition of ADDL binding by NR1 antibodies, ADDLs that were bound to detergent-extracted synaptosomal membranes co-immunoprecipitated with NMDA-R subunits The NR1 antibody did not affect ROS formation induced by NMDA, showing that NMDA-Rs themselves remained functional Memantine, an open channel NMDA-R antagonist prescribed as a memory-preserving drug for AD patients, completely protected against ADDL-induced ROS formation, as did other NMDA-R antagonists Memantine and the anti-NR1 antibody also attenuated a rapid ADDL-induced increase in intraneuronal calcium, which was essential for stimulated ROS formation These results show that ADDLs bind to or in close proximity to NMDA-Rs, triggering neuronal damage through NMDA-R-dependent calcium flux This response provides a pathologically specific mechanism for the therapeutic action of memantine, indicates a role for ROS dysregulation in ADDL-induced cognitive impairment, and supports the unifying hypothesis that ADDLs play a central role in AD pathogenesis
TL;DR: Evidence is provided that the pro-fibrotic growth factor, TGF-β1, induces adult mouse hepatocytes to undergo phenotypic and functional changes typical of epithelial to mesenchymal transition (EMT) and that EMT is a promising therapeutic target for the attenuation of liver fibrosis.
Abstract: Activated fibroblasts are key contributors to the fibrotic extracellular matrix accumulation during liver fibrosis. The origin of such fibroblasts is still debated, although several studies point to stellate cells as the principal source. The role of adult hepatocytes as contributors to the accumulation of fibroblasts in the fibrotic liver is yet undetermined. Here, we provide evidence that the pro-fibrotic growth factor, TGF-β1, induces adult mouse hepatocytes to undergo phenotypic and functional changes typical of epithelial to mesenchymal transition (EMT). We perform lineage-tracing experiments using AlbCre. R26RstoplacZ double transgenic mice to demonstrate that hepatocytes which undergo EMT contribute substantially to the population of FSP1-positive fibroblasts in CCL4-induced liver fibrosis. Furthermore, we demonstrate that bone morphogenic protein-7 (BMP7), a member of the TGFβ superfamily, which is known to antagonize TGFβ signaling, significantly inhibits progression of liver fibrosis in these mice. BMP7 treatment abolishes EMT-derived fibroblasts, suggesting that the therapeutic effect of BMP7 was at least partially due to the inhibition of EMT. These results provide direct evidence for the functional involvement of adult hepatocytes in the accumulation of activated fibroblasts in the fibrotic liver. Furthermore, our findings suggest that EMT is a promising therapeutic target for the attenuation of liver fibrosis.
TL;DR: It is concluded that chemerin is a novel adipose-derived signaling molecule that regulates adipogenesis and adipocyte metabolism and has a role in adaptive and innate immunity.
Abstract: Obesity is an alarming primary health problem and is an independent risk factor for type II diabetes, cardiovascular diseases, and hypertension Although the pathologic mechanisms linking obesity with these co-morbidities are most likely multifactorial, increasing evidence indicates that altered secretion of adipose-derived signaling molecules (adipokines; eg adiponectin, leptin, and tumor necrosis factor α) and local inflammatory responses are contributing factors Chemerin (RARRES2 or TIG2) is a recently discovered chemoattractant protein that serves as a ligand for the G protein-coupled receptor CMKLR1 (ChemR23 or DEZ) and has a role in adaptive and innate immunity Here we show an unexpected, high level expression of chemerin and its cognate receptor CMKLR1 in mouse and human adipocytes Cultured 3T3-L1 adipocytes secrete chemerin protein, which triggers CMKLR1 signaling in adipocytes and other cell types and stimulates chemotaxis of CMKLR1-expressing cells Adenoviral small hairpin RNA targeted knockdown of chemerin or CMKLR1 expression impairs differentiation of 3T3-L1 cells into adipocytes, reduces the expression of adipocyte genes involved in glucose and lipid homeostasis, and alters metabolic functions in mature adipocytes We conclude that chemerin is a novel adipose-derived signaling molecule that regulates adipogenesis and adipocyte metabolism
TL;DR: The results suggest that miR-221/222 can be regarded as a new family of oncogenes, directly targeting the tumor suppressor p27Kip1, and that their overexpression might be one of the factors contributing to the oncogenesis and progression of prostate carcinoma through p27kip1 down-regulation.
Abstract: MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional level and are deeply involved in the pathogenesis of several types of cancers. Here we show that miR-221 and miR-222, encoded in tandem on chromosome X, are overexpressed in the PC3 cellular model of aggressive prostate carcinoma, as compared with LNCaP and 22Rv1 cell line models of slowly growing carcinomas. In all cell lines tested, we show an inverse relationship between the expression of miR-221 and miR-222 and the cell cycle inhibitor p27(Kip1). We recognize two target sites for the microRNAs in the 3' untranslated region of p27 mRNA, and we show that miR-221/222 ectopic overexpression directly results in p27 down-regulation in LNCaP cells. In those cells, we demonstrate that the ectopic overexpression of miR-221/222 strongly affects their growth potential by inducing a G(1) to S shift in the cell cycle and is sufficient to induce a powerful enhancement of their colony-forming potential in soft agar. Consistently, miR-221 and miR-222 knock-down through antisense LNA oligonucleotides increases p27(Kip1) in PC3 cells and strongly reduces their clonogenicity in vitro. Our results suggest that miR-221/222 can be regarded as a new family of oncogenes, directly targeting the tumor suppressor p27(Kip1), and that their overexpression might be one of the factors contributing to the oncogenesis and progression of prostate carcinoma through p27(Kip1) down-regulation.
TL;DR: Data are consistent with a model in which PCSK9 binding to EGF-A interferes with an acid-dependent conformational change required for receptor recycling, and the LDLR is rerouted from the endosome to the lysosome where it is degraded.
Abstract: Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of hepatic low density lipoprotein receptors (LDLR), the major route of clearance of circulating cholesterol. Gain-of-function mutations in PCSK9 cause hypercholesterolemia and premature atherosclerosis, whereas loss-of-function mutations result in hypocholesterolemia and protection from heart disease. Recombinant human PCSK9 binds the LDLR on the surface of cultured hepatocytes and promotes degradation of the receptor after internalization. Here we localized the site of binding of PCSK9 within the extracellular domain of the LDLR and determined the fate of the receptor after PCSK9 binding. Recombinant human PCSK9 interacted in a sequence-specific manner with the first epidermal growth factor-like repeat (EGF-A) in the EGF homology domain of the human LDLR. Similar binding specificity was observed between PCSK9 and purified EGF-A. Binding to EGF-A was calcium-dependent and increased dramatically with reduction in pH from 7 to 5.2. The addition of PCSK9, but not heat-inactivated PCSK9, to the medium of cultured hepatocytes resulted in redistribution of the receptor from the plasma membrane to lysosomes. These data are consistent with a model in which PCSK9 binding to EGF-A interferes with an acid-dependent conformational change required for receptor recycling. As a consequence, the LDLR is rerouted from the endosome to the lysosome where it is degraded.
TL;DR: In this paper, the authors demonstrated that AKT-activated downstream from epidermal growth factor receptor signaling, phosphorylates β-catenin at Ser552 in vitro and in vivo.
Abstract: Increased transcriptional activity of β-catenin resulting from Wnt/Wingless-dependent or -independent signaling has been detected in many types of human cancer, but the underlying mechanism of Wnt-independent regulation is poorly understood. We have demonstrated that AKT, which is activated downstream from epidermal growth factor receptor signaling, phosphorylates β-catenin at Ser552 in vitro and in vivo. AKT-mediated phosphorylation of β-catenin causes its disassociation from cell-cell contacts and accumulation in both the cytosol and the nucleus and enhances its interaction with 14-3-3ζ via a binding motif containing Ser552. Phosphorylation of β-catenin by AKT increases its transcriptional activity and promotes tumor cell invasion, indicating that AKT-dependent regulation of β-catenin plays a critical role in tumor invasion and development.
TL;DR: It is demonstrated that Klotho and βKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively.
Abstract: The fibroblast growth factor (FGF) 19 subfamily of ligands, FGF19, FGF21, and FGF23, function as hormones that regulate bile acid, fatty acid, glucose, and phosphate metabolism in target organs through activating FGF receptors (FGFR1–4). We demonstrated that Klotho and βKlotho, homologous single-pass transmembrane proteins that bind to FGFRs, are required for metabolic activity of FGF23 and FGF21, respectively. Here we show that, like FGF21, FGF19 also requires βKlotho. Both FGF19 and FGF21 can signal through FGFR1–3 bound by βKlotho and increase glucose uptake in adipocytes expressing FGFR1. Additionally, both FGF19 and FGF21 bind to the βKlotho-FGFR4 complex; however, only FGF19 signals efficiently through FGFR4. Accordingly, FGF19, but not FGF21, activates FGF signaling in hepatocytes that primarily express FGFR4 and reduces transcription of CYP7A1 that encodes the rate-limiting enzyme for bile acid synthesis. We conclude that the expression of βKlotho, in combination with particular FGFR isoforms, determines the tissue-specific metabolic activities of FGF19 and FGF21.
TL;DR: It is found that AMPK directly regulates mammalian FOXO3, a member of the FOXO family of Forkhead transcription factors known to promote resistance to oxidative stress, tumor suppression, and longevity, by phosphorylation by AMPK at six previously unidentified regulatory sites.
Abstract: The maintenance of homeostasis throughout an organism's life span requires constant adaptation to changes in energy levels. The AMP-activated protein kinase (AMPK) plays a critical role in the cellular responses to low energy levels by switching off energy-consuming pathways and switching on energy-producing pathways. However, the transcriptional mechanisms by which AMPK acts to adjust cellular energy levels are not entirely characterized. Here, we find that AMPK directly regulates mammalian FOXO3, a member of the FOXO family of Forkhead transcription factors known to promote resistance to oxidative stress, tumor suppression, and longevity. We show that AMPK phosphorylates human FOXO3 at six previously unidentified regulatory sites. Phosphorylation by AMPK leads to the activation of FOXO3 transcriptional activity without affecting FOXO3 subcellular localization. Using a genome-wide microarray analysis, we identify a set of target genes that are regulated by FOXO3 when phosphorylated at these six regulatory sites in mammalian cells. The regulation of FOXO3 by AMPK may play a crucial role in fine tuning gene expression programs that control energy balance and stress resistance in cells throughout life.
TL;DR: Evidence is provided that activation of the p90 ribosomal S6 kinases (RSKs) by serum, growth factors, tumor promoting phorbol esters, and oncogenic Ras provides an mTOR-independent pathway linking the Ras/ERK signaling cascade to the translational machinery.
Abstract: Converging signals from the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K) pathways are well established to modulate translation initiation. Less is known regarding the molecular basis of protein synthesis regulated by other inputs, such as agonists of the Ras/extracellular signal-regulated kinase (ERK) signaling cascade. Ribosomal protein (rp) S6 is a component of the 40S ribosomal subunit that becomes phosphorylated at several serine residues upon mitogen stimulation, but the exact molecular mechanisms regulating its phosphorylation and the function of phosphorylated rpS6 is poorly understood. Here, we provide evidence that activation of the p90 ribosomal S6 kinases (RSKs) by serum, growth factors, tumor promoting phorbol esters, and oncogenic Ras is required for rpS6 phosphorylation downstream of the Ras/ERK signaling cascade. We demonstrate that while ribosomal S6 kinase 1 (S6K1) phosphorylates rpS6 at all sites, RSK exclusively phosphorylates rpS6 at Ser235/236 in vitro and in vivo using an mTOR-independent mechanism. Mutation of rpS6 at Ser235/236 reveals that phosphorylation of these sites promotes its recruitment to the 7-methylguanosine cap complex, suggesting that Ras/ERK signaling regulates assembly of the translation preinitiation complex. These data demonstrate that RSK provides an mTOR-independent pathway linking the Ras/ERK signaling cascade to the translational machinery.
TL;DR: The results indicate that oligomers are not an obligate intermediate in the fibril formation pathway and suggest that small molecule inhibitors are useful for clarifying the mechanisms underlying protein aggregation and may represent potential therapeutic agents that target fundamental disease mechanisms.
Abstract: Alzheimer disease is characterized by the abnormal aggregation of amyloid β peptide into extracellular fibrillar deposits known as amyloid plaques. Soluble oligomers have been observed at early time points preceding fibril formation, and these oligomers have been implicated as the primary pathological species rather than the mature fibrils. A significant issue that remains to be resolved is whether amyloid oligomers are an obligate intermediate on the pathway to fibril formation or represent an alternate assembly pathway that may or may not lead to fiber formation. To determine whether amyloid β oligomers are obligate intermediates in the fibrillization pathway, we characterized the mechanism of action of amyloid β aggregation inhibitors in terms of oligomer and fibril formation. Based on their effects, the small molecules segregated into three distinct classes: compounds that inhibit oligomerization but not fibrillization, compounds that inhibit fibrillization but not oligomerization, and compounds that inhibit both. Several compounds selectively inhibited oligomerization at substoichiometric concentrations relative to amyloid β monomer, with some active in the low nanomolar range. These results indicate that oligomers are not an obligate intermediate in the fibril formation pathway. In addition, these data suggest that small molecule inhibitors are useful for clarifying the mechanisms underlying protein aggregation and may represent potential therapeutic agents that target fundamental disease mechanisms.
TL;DR: Protein phosphorylation at Ser637 results in clear alterations in Drp1 function and mitochondrial morphology that are likely involved in dynamic regulation of mitochondrial division in cells.
Abstract: Mitochondria in cells comprise a tubulovesicular reticulum shaped by dynamic fission and fusion events. The multimeric dynamin-like GTPase Drp1 is a critical protein mediating mitochondrial division. It harbors multiple motifs including GTP-binding, middle, and GTPase effector (GED) domains that are important for both intramolecular and intermolecular interactions. As for other members of the dynamin superfamily, such interactions are critical for assembly of higher-order structures and cooperative increases in GTPase activity. Although the functions of Drp1 in cells have been extensively studied, mechanisms underlying its regulation remain less clear. Here, we have identified cAMP-dependent protein kinase-dependent phosphorylation of Drp1 within the GED domain at Ser637 that inhibits Drp1 GTPase activity. Mechanistically, this change in GTPase activity likely derives from decreased interaction of GTP-binding/middle domains with the GED domain since the phosphomimetic S637D mutation impairs this intramolecular interaction but not Drp1-Drp1 intermolecular interactions. Using the phosphomimetic S637D substitution, we also demonstrate that mitochondrial fission is prominently inhibited in cells. Thus, protein phosphorylation at Ser637 results in clear alterations in Drp1 function and mitochondrial morphology that are likely involved in dynamic regulation of mitochondrial division in cells.
TL;DR: An increase in ROS levels in ATP-treated macrophages results in activation of a single pathway that promotes both adaptation to subsequent exposure to oxidants or inflammation, and processing and secretion of proinflammatory cytokines.
Abstract: Secretion of the proinflammatory cytokines, interleukin (IL)-1β and IL-18, usually requires two signals. The first, due to microbial products such as lipopolysaccharide, initiates transcription of the cytokine genes and accumulation of the precursor proteins. Cleavage and secretion of the cytokines is mediated by caspase-1, in association with an inflammasome containing Nalp3, which can be activated by binding of extracellular ATP to purinergic receptors. We show that treatment of macrophages with ATP results in production of reactive oxygen species (ROS), which stimulate the phosphatidylinositol 3-kinase (PI3K) pathway and subsequent Akt and ERK1/2 activation. ROS exerts its effect through glutathionylation of PTEN (phosphatase and tensin homologue deleted from chromosome 10), whose inactivation would shift the equilibrium in favor of PI3K. ATP-dependent ROS production and PI3K activation also stimulate transcription of genes required for an oxidative stress response. In parallel, ATP-mediated ROS-dependent PI3K is required for activation of caspase-1 and secretion of IL-1β and IL-18. Thus, an increase in ROS levels in ATP-treated macrophages results in activation of a single pathway that promotes both adaptation to subsequent exposure to oxidants or inflammation, and processing and secretion of proinflammatory cytokines.
TL;DR: Findings indicate that nucleocytoplasmic shuttling is a novel regulatory mechanism of SIRT1, which may participate in differentiation and in inhibition of cell death.
Abstract: Sir2 (silent information regulator 2) is an NAD+-dependent histone deacetylase that contributes to longevity in yeast. SIRT1, a mammalian Sir2 ortholog, deacetylates histones and various transcription factors, including p53, FOXO proteins, and peroxisome proliferator-activated receptor-γ. We found that its subcellular localization varied in different tissues of the adult mouse. Some subsets of neurons predominantly expressed SIRT1 in the cytoplasm, but ependymal cells expressed it in both the nucleus and cytoplasm. On the other hand, spermatocytes expressed SIRT1 only in the nucleus. Cardiomyocytes in the day 12.5 mouse embryo expressed SIRT1 exclusively in the nucleus, but in the adult heart, they expressed it in both the cytoplasm and nucleus. C2C12 myoblast cells expressed SIRT1 in the nucleus, but it localized to the cytoplasm after differentiation. LY294002, an inhibitor of phosphoinositide 3-hydroxykinase, strongly inhibited the nuclear localization of SIRT1 in undifferentiated C2C12 cells. In a heterokaryon assay, SIRT1 shuttled between the nucleus and cytoplasm, and leptomycin B, an inhibitor of CRM1-mediated nuclear exportation, inhibited this shuttling. Two nuclear localization signals and two nuclear export signals were identified by deletion and site-directed mutation analyses. Overexpressed nuclear (but not cytoplasmic or dominant-negative) SIRT1 enhanced the deacetylation of histone H3 in C2C12 cells. Moreover, only the nuclear form suppressed the apoptosis of C2C12 cells induced by antimycin A, an oxidative stressor. These findings indicate that nucleocytoplasmic shuttling is a novel regulatory mechanism of SIRT1, which may participate in differentiation and in inhibition of cell death.
TL;DR: It is argued that IL-21 serves as an autocrine factor secreted by Th17 cells that promotes or sustains Th17 lineage commitment.
Abstract: CD4+ helper T cells can differentiate into several possible fates including: Th1, Th2, T regulatory, and Th17 cells. Although, cytokine production by non-T cells is an important factor in helper T cell differentiation, a characteristic feature of both Th1 and Th2 lineages is their ability to secrete cytokines that promote their respective differentiation. However, cytokines produced by T cells that help to sustain Th17 cells have not yet been identified. Here we show that IL-21 is a product of Th17 cells, which is induced in a Stat3-dependent manner. Additionally, Stat3 can directly bind the Il21 promoter. IL-21 also induces IL-17 production and expression of the transcription factor, RORγt. Furthermore, generation of Th17 cells in the conventional manner is attenuated by blocking IL-21. IL-21 is known to activate Stat3 and its ability to induce Th17 differentiation is abrogated in the absence of Stat3. These data argue that IL-21 serves as an autocrine factor secreted by Th17 cells that promotes or sustains Th17 lineage commitment.
TL;DR: The feasibility of using miRNAs as a therapeutic strategy to suppress oncogene expression and function is illustrated by the use of human breast cancer cell line SKBR3 as a model for ERBB2 and ERBB3 dependence.
Abstract: Deregulation of micro-RNAs (miRNAs) is emerging as a major aspect of cancer etiology because their capacity to direct the translation and stability of targeted transcripts can dramatically influence cellular physiology. To explore the potential of exogenously applied miRNAs to suppress oncogenic proteins, the ERBB oncogene family was chosen with a bioinformatics search identifying targeting seed sequences for miR-125a and miR-125b within the 3′-untranslated regions of both ERBB2 and ERBB3. Using the human breast cancer cell line SKBR3 as a model for ERBB2 and ERBB3 dependence, infection of these cells with retroviral constructs expressing either miR-125a or miR-125b resulted in suppression of ERBB2 and ERBB3 at both the transcript and protein level. Luciferase constructs containing the 3′ 3′-untranslated regions of ERBB2 and ERBB3 demonstrated ∼35% less activity in miR-125a- and miR-125b-expressing cells relative to controls. Additionally, phosphorylation of ERK1/2 and AKT was suppressed in SKBR3 cells overexpressing either miR-125a or miR-125b. Consistent with suppression of both ERBB2 and ERBB3 signaling, miR-125a-or miR-125b-overexpressing SKBR3 cells were impaired in their anchorage-dependent growth and exhibited reduced migration and invasion capacities. Parallel studies performed on MCF10A cells demonstrated that miR-125a or miR-125b overexpression produced only marginal influences on the growth and migration of these non-transformed human mammary epithelial cells. These results illustrate the feasibility of using miRNAs as a therapeutic strategy to suppress oncogene expression and function.
TL;DR: The results suggest that the autoregulation between E2F1–3 and miR-20a is important for preventing an abnormal accumulation of E 2F1-3 and may play a role in the regulation of cellular proliferation and apoptosis.
Abstract: The E2F family of transcription factors is essential in the regulation of the cell cycle and apoptosis. While the activity of E2F1-3 is tightly controlled by the retinoblastoma family of proteins, the expression of these factors is also regulated at the level of transcription, post-translational modifications and protein stability. Recently, a new level of regulation of E2Fs has been identified, where micro-RNAs (miRNAs) from the mir-17-92 cluster influence the translation of the E2F1 mRNA. We now report that miR-20a, a member of the mir-17-92 cluster, modulates the translation of the E2F2 and E2F3 mRNAs via binding sites in their 3'-untranslated region. We also found that the endogenous E2F1, E2F2, and E2F3 directly bind the promoter of the mir-17-92 cluster activating its transcription, suggesting an autoregulatory feedback loop between E2F factors and miRNAs from the mir-17-92 cluster. Our data also point toward an anti-apoptotic role for miR-20a, since overexpression of this miRNA decreased apoptosis in a prostate cancer cell line, while inhibition of miR-20a by an antisense oligonucleotide resulted in increased cell death after doxorubicin treatment. This anti-apoptotic role of miR-20a may explain some of the oncogenic capacities of the mir-17-92 cluster. Altogether, these results suggest that the autoregulation between E2F1-3 and miR-20a is important for preventing an abnormal accumulation of E2F1-3 and may play a role in the regulation of cellular proliferation and apoptosis.
TL;DR: The dual role of Brd4 in gene activation and repression illustrates how a dynamic chromatin-binding adaptor is able to recruit distinct transcriptional regulators to modulate promoter activity through cell cycle progression.
Abstract: Brd4 is a double bromodomain-containing protein that binds preferentially to acetylated chromatin. It belongs to the BET (bromodomains and extraterminal) family that includes mammalian Brd2, Brd3, Brd4, Brdt, Drosophila Fsh, yeast Bdf1, Bdf2, and corresponding homologues in other species. Brd4 is essential for cellular growth and has been implicated in cell cycle control, DNA replication, and gene rearrangement found in t(15;19)-associated carcinomas. Recently, Brd4 has been found in several transcription complexes, including the general cofactor Mediator and the P-TEFb elongation factor, and is capable of stimulating HIV-1 transcription in a Tat-independent manner. In addition, Brd4 is used as a cellular adaptor by some animal and human papillomaviruses (HPV) for anchoring viral genomes to mitotic chromosomes. This tethering, mediated by Brd4 interaction with virus-encoded E2 protein, facilitates viral genome segregation during mitosis. Interestingly, Brd4 is also identified in a transcriptional silencing complex assembled by HPV E2 and turns out to be the long sought cellular corepressor that inhibits the expression of HPV-encoded E6 and E7 oncoproteins that antagonize p53 and pRB tumor suppressor activity, respectively. The dual role of Brd4 in gene activation and repression illustrates how a dynamic chromatin-binding adaptor is able to recruit distinct transcriptional regulators to modulate promoter activity through cell cycle progression.
TL;DR: It is concluded that the oxidative stress that underlies physiologic organismal aging in mice may be a pivotal pathogenetic mechanism of the age-related bone loss and strength.
Abstract: Both aging and loss of sex steroids have adverse effects on skeletal homeostasis, but whether and how they may influence each others negative impact on bone remains unknown. We report herein that both female and male C57BL/6 mice progressively lost strength (as determined by load-to-failure measurements) and bone mineral density in the spine and femur between the ages of 4 and 31 months. These changes were temporally associated with decreased rate of remodeling as evidenced by decreased osteoblast and osteoclast numbers and decreased bone formation rate; as well as increased osteoblast and osteocyte apoptosis, increased reactive oxygen species levels, and decreased glutathione reductase activity and a corresponding increase in the phosphorylation of p53 and p66shc, two key components of a signaling cascade that are activated by reactive oxygen species and influences apoptosis and lifespan. Exactly the same changes in oxidative stress were acutely reproduced by gonadectomy in 5-month-old females or males and reversed by estrogens or androgens in vivo as well as in vitro.We conclude that the oxidative stress that underlies physiologic organismal aging in mice may be a pivotal pathogenetic mechanism of the age-related bone loss and strength. Loss of estrogens or androgens accelerates the effects of aging on bone by decreasing defense against oxidative stress.
TL;DR: A critical role is demonstrated for PGC-1α in maintenance of normal fiber type composition and of muscle fiber integrity following exertion in skeletal muscle knock-out animals.
Abstract: The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a key integrator of neuromuscular activity in skeletal muscle. Ectopic expression of PGC-1α in muscle results in increased mitochondrial number and function as well as an increase in oxidative, fatigue-resistant muscle fibers. Whole body PGC-1α knock-out mice have a very complex phenotype but do not have a marked skeletal muscle phenotype. We thus analyzed skeletal muscle-specific PGC-1α knock-out mice to identify a specific role for PGC-1α in skeletal muscle function. These mice exhibit a shift from oxidative type I and IIa toward type IIx and IIb muscle fibers. Moreover, skeletal muscle-specific PGC-1α knock-out animals have reduced endurance capacity and exhibit fiber damage and elevated markers of inflammation following treadmill running. Our data demonstrate a critical role for PGC-1α in maintenance of normal fiber type composition and of muscle fiber integrity following exertion.