scispace - formally typeset
Search or ask a question

Showing papers by "Vardha N. Bennert published in 2012"


Journal ArticleDOI
TL;DR: In this article, the authors presented ultraviolet (UV) and optical observations of SN 2009ig, starting about 1 day after explosion until around maximum brightness, and provided a precise measurement of 17.13± 0.07 days for the SN rise time.
Abstract: Supernova (SN) 2009ig was discovered 17 hours after explosion by the Lick Observatory Supernova Search, promptly classified as a normal Type Ia SN (SN Ia), peaked at V = 13.5 mag, and was equatorial, making it one of the foremost supernovae for intensive study in the last decade. Here, we present ultraviolet (UV) and optical observations of SN 2009ig, starting about 1 day after explosion until around maximum brightness. Our data include excellent UV and optical light curves, 25 premaximum optical spectra, and 8 UV spectra, including the earliest UV spectrum ever obtained of a SN Ia. SN 2009ig is a relatively normal SN Ia, but does display high-velocity ejecta — the ejecta velocity measured in our earliest spectra (v � 23,000 kms −1 for Si II �6355) is the highest yet measured in a SN Ia. The spectral evolution is very dramatic at times earlier than 12 days before maximum brightness, but slows after that time. The early-time data provide a precise measurement of 17.13± 0.07 days for the SN rise time. The optical color curves and early-time spectra are significantly different from template light curves and spectra used for light-curve fitting and K-corrections, indicating that the template light curves and spectra do not properly represent all Type Ia supernovae at very early times. In the age of wide-angle sky surveys, SNe like SN 2009ig that are nearby, bright, well positioned, and promptly discovered will still be rare. As shown with SN 2009ig, detailed studies of single events can provide significantly more information for testing systematic uncertainties related to SN Ia distance estimates and constraining progenitor and explosion models than large samples of more distant SNe. Subject headings: supernovae — general; supernovae — individual (SN 2009ig)

157 citations


Journal ArticleDOI
TL;DR: In this article, a new set of extended emission-line regions (EELRs) was identified, which can trace both the illumination pattern of escaping radiation and its history over the light-travel time from the active galactic nuclei to the gas.
Abstract: Some active galactic nuclei (AGN) are surrounded by extended emission-line regions (EELRs), which trace both the illumination pattern of escaping radiation and its history over the light-travel time from the AGN to the gas. From a new set of such EELRs, we present evidence that the AGN in many Seyfert galaxies undergo luminous episodes 0.2–2×10 5 years in duration. Motivated by the discovery of the spectacular nebula known as Hanny’s Voorwerp, ionized by a powerful AGN which has apparently faded dramatically within � 10 5 years, Galaxy Zoo volunteers have carried out both targeted and serendipitous searches for similar emission-line clouds around lowredshift galaxies. We present the resulting list of candidates and describe spectroscopy identifying 19 galaxies with AGN-ionized regions at projected radii rproj > 10 kpc. This search recovered known EELRs (such as Mkn 78, Mkn 266, and NGC 5252) and identified additional previously unknown cases, one with detected emission to r = 37 kpc. One new Sy 2 was identified. At least 14/19 are in interacting or merging systems, suggesting that tidal tails are a prime source of distant gas out of the galaxy plane to be ionized by an AGN. We see a mix of one- and two-sided structures, with observed cone angles from 23–112 ◦ . We consider the energy balance in the ionized clouds, with lower and upper bounds on ionizing luminosity from recombination and ionizationparameter arguments, and estimate the luminosity of the core from the far-infrared data. The implied ratio of ionizing radiation seen by the clouds to that emitted by the nucleus, on the assumption of a nonvariable nuclear source, ranges from 0.02 to > 12; 7/19 exceed unity. Small values fit well with a heavily obscured AGN in which only a small fraction of the ionizing output escapes to be traced by surrounding gas. However, large values may require that the AGN has faded over tens of thousands of years, giving us several examples of systems in which such dramatic long-period variation has occurred; this is the only current technique for addressing these timescales in AGN history. The relative numbers of faded and non-faded objects we infer, and the projected extents of the ionized regions, give our estimate (0.2–2×10 5 years ) for

144 citations


Journal ArticleDOI
TL;DR: In this paper, the uncertainties of the single-epoch (SE) method were investigated using homogeneous and high-quality multepoch spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for nine local Seyfert 1 galaxies with BH masses <10{sup 8} M{sub Sun }.
Abstract: We investigate the calibration and uncertainties of black hole (BH) mass estimates based on the single-epoch (SE) method, using homogeneous and high-quality multi-epoch spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for nine local Seyfert 1 galaxies with BH masses <10{sup 8} M{sub Sun }. By decomposing the spectra into their AGNs and stellar components, we study the variability of the SE H{beta} line width (full width at half-maximum intensity, FWHM{sub H{beta}} or dispersion, {sigma}{sub H{beta}}) and of the AGN continuum luminosity at 5100 A (L{sub 5100}). From the distribution of the 'virial products' ({proportional_to} FWHM{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100} or {sigma}{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100}) measured from SE spectra, we estimate the uncertainty due to the combined variability as {approx}0.05 dex (12%). This is subdominant with respect to the total uncertainty in SE mass estimates, which is dominated by uncertainties in the size-luminosity relation and virial coefficient, and is estimated to be {approx}0.46 dex (factor of {approx}3). By comparing the H{beta} line profile of the SE, mean, and root-mean-square (rms) spectra, we find that the H{beta} line is broader in the mean (and SE) spectra than in the rms spectra by {approx}0.1 dex (25%)more » for our sample with FWHM{sub H{beta}} <3000 km s{sup -1}. This result is at variance with larger mass BHs where the difference is typically found to be much less than 0.1 dex. To correct for this systematic difference of the H{beta} line profile, we introduce a line-width dependent virial factor, resulting in a recalibration of SE BH mass estimators for low-mass AGNs.« less

144 citations


Journal ArticleDOI
TL;DR: In this article, a dynamical model of the broad line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011 is presented.
Abstract: We present dynamical modeling of the broad-line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6^(+1.2)_(–0.9) light days, a width of the BLR of 6.9^(+1.2)_(–1.1) light days, and a disk opening angle of 25 ± 10 deg above the plane. We also constrain the inclination angle to be 9^(+7)_(–5) deg, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log_(10)(M_(BH)/M_☉) = 7.57^(+0.44)_(–0.27). By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log_(10) f = 0.78^(+0.44)_(–0.27), consistent with the commonly adopted mean value of 0.74 based on aligning the M_(BH)-σ* relation for active galactic nuclei and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.

107 citations


Journal ArticleDOI
TL;DR: In this paper, a dynamical modeling of the broad line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011 is presented.
Abstract: We present dynamical modeling of the broad line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6(+1.2,-0.9) light days, a width of the BLR of 6.9(+1.2,-1.1) light days, and a disk opening angle of 25\pm10 degrees above the plane. We also constrain the inclination angle to be 9(+7,-5) degrees, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log10(M(BH)/Msun) = 7.57(+0.44,-0.27). By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log10(f) = 0.78(+0.44,-0.27), consistent with the commonly adopted mean value of 0.74 based on aligning the M(BH)-{\sigma}* relation for AGN and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.

104 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the Hubble Space Telescope imaging and spectroscopy, along with supporting Galaxy Evolution Explorer and ground-based data, for the extended high-ionization cloud known as Hanny's Voorwerp, near the spiral galaxy IC 2497.
Abstract: We present Hubble Space Telescope imaging and spectroscopy, along with supporting Galaxy Evolution Explorer and ground-based data, for the extended high-ionization cloud known as Hanny's Voorwerp, near the spiral galaxy IC 2497. Wide Field Camera 3 images show complex dust absorption near the nucleus of IC 2497. The galaxy core in these data is, within the errors, coincident with the very long baseline interferometry core component marking the active nucleus. Space Telescope Imaging Spectrograph (STIS) optical spectra show the active galactic nucleus (AGN) to be a type 2 Seyfert galaxy of rather low luminosity. The derived ionization parameter log U = –3.5 is in accordance with the weak X-ray emission from the AGN. We find no high-ionization gas near the nucleus, adding to the evidence that the AGN is currently at a low radiative output (perhaps with the central black hole having switched to a mode dominated by kinetic energy). The nucleus is accompanied by an expanding ring of ionized gas ≈500 pc in projected diameter on the side opposite Hanny's Voorwerp. Where sampled by the STIS slit, this ring has Doppler offset ≈300 km s–1 from the nucleus, implying a kinematic age 100 (and possibly much more) within the last (1-2) × 105 years; we suggest a tentative sequence of events in IC 2497 and discuss implications of such rapid fluctuations in luminosity for our understanding of AGN demographics.

95 citations


Journal ArticleDOI
TL;DR: In this article, the authors derived spatially resolved stellar kinematics for a sample of 84 out of 104 observed local (0.02 < z < 0.09) galaxies hosting type-1 active galactic nuclei (AGNs), based on long-slit spectra obtained at the 10 m W. M. Keck-1 Telescope.
Abstract: We derive spatially resolved stellar kinematics for a sample of 84 out of 104 observed local (0.02 < z < 0.09) galaxies hosting type-1 active galactic nuclei (AGNs), based on long-slit spectra obtained at the 10 m W. M. Keck-1 Telescope. In addition to providing central stellar velocity dispersions, we measure major axis rotation curves and velocity dispersion profiles using three separate wavelength regions, including the prominent Ca H&K, Mg Ib, and Ca II NIR stellar features. In this paper, we compare kinematic measurements of stellar velocity dispersion obtained for different apertures, wavelength regions, and signal-to-noise ratios, and provide recipes to cross-calibrate the measurements reducing systematic effects to the level of a few percent. We also provide simple recipes based on readily observable quantities such as global colors and Ca H&K equivalent width that will allow observers of high-redshift AGN hosts to increase the probability of obtaining reliable stellar kinematic measurements from unresolved spectra in the region surrounding the Ca H&K lines. In subsequent papers in this series, we will combine this unprecedented spectroscopic data set with surface photometry and black hole mass measurements to study in detail the scaling relations between host galaxy properties and black hole mass.

37 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the relationship between the emission-line properties, the black hole accretion rate, and the radio properties using a sample of 34 low-redshift (z < 0.4) YRGs.
Abstract: Young radio galaxies (YRGs) provide an ideal laboratory to explore the connection between the accretion disk and radio jet thanks to their recent jet formation. We investigate the relationship between the emission-line properties, the black hole accretion rate, and the radio properties using a sample of 34 low-redshift ( z< 0.4) YRGs. We classify YRGs as high-excitation galaxies (HEGs) and low-excitation galaxies (LEGs) based on the flux ratio of high-ionization to low-ionization emission lines. Using the Hα luminosities as a proxy of accretion rate, we find that HEGs in YRGs have ∼1 dex higher Eddington ratios than LEGs in YRGs, suggesting that HEGs have a higher mass accretion rate or higher radiative efficiency than LEGs. In agreement with previous studies, we find that the luminosities of emission lines, in particular Hα, are correlated with radio core luminosity, suggesting that accretion and young radio activities are fundamentally connected.

27 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Hubble Space Telescope imaging and spectroscopy for the extended high-ionization cloud known as Hanny's Voorwerp, near the spiral galaxy IC 2497.
Abstract: We present Hubble Space Telescope imaging and spectroscopy for the extended high-ionization cloud known as Hanny's Voorwerp, near the spiral galaxy IC 2497. WFC3 images show complex dust absorption near the nucleus of IC 2497. STIS spectra show a type 2 Seyfert AGN of rather low luminosity. The ionization parameter log U = -3.5 is in accord with its weak X-ray emission. We find no high-ionization gas near the nucleus, adding to evidence that the AGN is currently at low radiative output (perhaps now dominated by kinetic energy). The nucleus is accompanied by an expanding ring of ionized gas 500 pc in projected diameter on the side opposite Hanny's Voorwerp, with Doppler offset 300 km/s from the nucleus (kinematic age 100 (and possibly much more) within the last 1-2 x 10^5 years; we suggest a sequence of events and discuss implications of such rapid fluctuations for AGN demographics. (Abridged)

11 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the relationship between the emission-line properties, the black hole accretion rate, and the radio properties using a sample of 34 low-redshift (z < 0.4) YRGs.
Abstract: Young radio galaxies (YRGs) provide an ideal laboratory to explore the connection between accretion disk and radio jet thanks to their recent jet formation. We investigate the relationship between the emission-line properties, the black hole accretion rate, and the radio properties using a sample of 34 low-redshift (z < 0.4) YRGs. We classify YRGs as high-excitation galaxies (HEGs) and low-excitation galaxies (LEGs) based on the flux ratio of high-ionization to low-ionization emission lines. Using the H{\alpha} luminosities as a proxy of accretion rate, we find that HEGs in YRGs have \sim1 dex higher Eddington ratios than LEGs in YRGs, suggesting that HEGs have higher mass accretion rate or higher radiative efficiency than LEGs. In agreement with previous studies, we find that the luminosities of emission lines, in particular H{\alpha}, are correlated with radio core luminosity, suggesting that accretion and young radio activities are fundamentally connected.

4 citations