scispace - formally typeset
Search or ask a question
Author

Xihong Lu

Bio: Xihong Lu is an academic researcher from Sun Yat-sen University. The author has contributed to research in topics: Anode & Supercapacitor. The author has an hindex of 88, co-authored 337 publications receiving 29367 citations. Previous affiliations of Xihong Lu include Wuyi University & Wenzhou Medical College.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors.
Abstract: We report a new and general strategy for improving the capacitive properties of TiO2 materials for supercapacitors, involving the synthesis of hydrogenated TiO2 nanotube arrays (NTAs). The hydrogenated TiO2 (denoted as H–TiO2) were obtained by calcination of anodized TiO2 NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H–TiO2 NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm–2 at a scan rate of 100 mV s–1, which is 40 times higher than the capacitance obtained from air-annealed TiO2 NTAs at the same conditions. Importantly, H–TiO2 NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s–1, as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10 000 cycles. The prominent electrochemical capacitive properties of H–TiO2 are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO2 surfa...

1,225 citations

Journal ArticleDOI
TL;DR: This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors, based on carbon materials and a number of composites and flexible micro-supercapacitor.
Abstract: Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices.

1,107 citations

Journal ArticleDOI
TL;DR: Flexible solid-state supercapacitors (SCs) have attracted increasing interest because they can provide substantially higher specific/volumetric energy density compared to conventional capacitors.
Abstract: Increasing power and energy demands for next-generation portable and flexible electronics such as roll-up displays, photovoltaic cells, and wearable devices have stimulated intensive efforts to explore flexible, lightweight and environmentally friendly energy storage devices. Flexible solid-state supercapacitors (SCs) have attracted increasing interest because they can provide substantially higher specific/volumetric energy density compared to conventional capacitors. Additionally, flexible solid-state SCs are typically small in size, highly reliable, light-weight, easy to handle, and have a wide range of operation temperatures. In this regard, solid-state SCs hold great promise as new energy storage devices for flexible and wearable electronics. In this article, we review recent achievements in the design, fabrication and characterization of flexible solid-state SCs. Moreover, we also discuss the current challenges and future opportunities for the development of high-performance flexible solid-state SCs.

1,105 citations

Journal ArticleDOI
24 Jan 2012-ACS Nano
TL;DR: A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte to highlight the path for its enormous potential in energy management.
Abstract: A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO2 nanorods hybrid structure using polyvinyl alcohol/H3PO4 electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management.

953 citations

Journal ArticleDOI
TL;DR: A flexible solid-state asymmetric supercapacitor device with H-TiO(2) @MnO (2) core-shell NWs as the positive electrode and H- TiO( 2) @C core- shell NWsas the negative electrode is developed, able to deliver a high specific capacitance and maximum volumetric energy density.
Abstract: A flexible solid-state asymmetric supercapacitor device with H-TiO(2) @MnO(2) core-shell NWs as the positive electrode and H-TiO(2) @C core-shell NWs as the negative electrode is developed. This device operates in a 1.8 V voltage window and is able to deliver a high specific capacitance of 139.6 F g(-1) and maximum volumetric energy density of 0.30 mWh cm(-3) with excellent cycling performance and good flexibility.

885 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the key technological developments and scientific challenges for a broad range of Li-ion battery electrodes is presented, and the potential/capacity plots are used to compare many families of suitable materials.

5,057 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Abstract: Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

2,480 citations

Journal ArticleDOI
TL;DR: Recent advances in strategies for advanced metal oxide-based hybrid nanostructure design are reviewed, with the focus on the binder-free film/array electrodes that can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance.
Abstract: Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed.

2,176 citations