scispace - formally typeset
Search or ask a question
Institution

Ablynx

CompanyGhent, Belgium
About: Ablynx is a company organization based out in Ghent, Belgium. It is known for research contribution in the topics: Amino acid & Nucleic acid. The organization has 361 authors who have published 307 publications receiving 12176 citations.
Topics: Amino acid, Nucleic acid, Antibody, In vivo, Receptor


Papers
More filters
Journal ArticleDOI
Hennie R. Hoogenboom1
TL;DR: The first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.
Abstract: During the past decade several display methods and other library screening techniques have been developed for isolating monoclonal antibodies (mAbs) from large collections of recombinant antibody fragments. These technologies are now widely exploited to build human antibodies with high affinity and specificity. Clever antibody library designs and selection concepts are now able to identify mAb leads with virtually any specificity. Innovative strategies enable directed evolution of binding sites with ultra-high affinity, high stability and increased potency, sometimes to a level that cannot be achieved by immunization. Automation of the technology is making it possible to identify hundreds of different antibody leads to a single therapeutic target. With the first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.

1,057 citations

Journal ArticleDOI
TL;DR: This minireview offers an overview ofamelids' properties as compared to conventional antibodies, their production in microorganisms, with a focus on yeasts, and their therapeutic applications.
Abstract: Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications.

768 citations

Journal ArticleDOI
TL;DR: Findings point to a mechanism by which casp-dependent generation of Beclin-1-C creates an amplifying loop enhancing apoptosis upon growth factor withdrawal.
Abstract: Autophagy and apoptosis are two important and interconnected stress-response mechanisms. However, the molecular interplay between these two pathways is not fully understood. To study the fate and function of autophagic proteins at the onset of apoptosis, we used a cellular model system in which autophagy precedes apoptosis. IL-3 depletion of Ba/F3 cells caused caspase (casp)-mediated cleavage of Beclin-1 and PI3KC3, two crucial components of the autophagy-inducing complex. We identified two casp cleavage sites in Beclin-1, TDVD133 and DQLD149, cleavage at which yields fragments lacking the autophagy-inducing capacity. Noteworthy, the C-terminal fragment, Beclin-1-C, localized predominantly at the mitochondria and sensitized the cells to apoptosis. Moreover, on isolated mitochondria, recombinant Beclin-1-C was able to induce the release of proapoptotic factors. These findings point to a mechanism by which casp-dependent generation of Beclin-1-C creates an amplifying loop enhancing apoptosis upon growth factor withdrawal.

609 citations

Journal ArticleDOI
TL;DR: Caplacizumab induced a faster resolution of the acute TTP episode than did placebo, and the platelet-protective effect of caplacIZumab was maintained during the treatment period.
Abstract: BackgroundAcquired thrombotic thrombocytopenic purpura (TTP) is caused by aggregation of platelets on ultralarge von Willebrand factor multimers. This microvascular thrombosis causes multiorgan ischemia with potentially life-threatening complications. Daily plasma exchange and immunosuppressive therapies induce remission, but mortality and morbidity due to microthrombosis remain high. MethodsCaplacizumab, an anti–von Willebrand factor humanized single-variable-domain immunoglobulin (Nanobody), inhibits the interaction between ultralarge von Willebrand factor multimers and platelets. In this phase 2, controlled study, we randomly assigned patients with acquired TTP to subcutaneous caplacizumab (10 mg daily) or placebo during plasma exchange and for 30 days afterward. The primary end point was the time to a response, defined as confirmed normalization of the platelet count. Major secondary end points included exacerbations and relapses. ResultsSeventy-five patients underwent randomization (36 were assigned ...

439 citations

Journal ArticleDOI
TL;DR: The results show that functional phage antibody selection, coupled to the rational design of Nanobodies, permits the rapid development of novel anti-cancer antibody-based therapeutics.
Abstract: The development of a number of different solid tumours is associated with over-expression of ErbB1, or the epidermal growth factor receptor (EGFR), and this over-expression is often correlated with poor prognosis of patients. Therefore, this receptor tyrosine kinase is considered to be an attractive target for antibody-based therapy. Indeed, antibodies to the EGFR have already proven their value for the treatment of several solid tumours, especially in combination with chemotherapeutic treatment regimens. Variable domains of camelid heavy chain-only antibodies (called Nanobodies) have superior properties compared with classical antibodies in that they are small, very stable, easy to produce in large quantities and easy to re-format into multi-valent or multi-specific proteins. Furthermore, they can specifically be selected for a desired function by phage antibody display. In this report, we describe the successful selection and the characterisation of antagonistic anti-EGFR Nanobodies. By using a functional selection strategy, Nanobodies that specifically competed for EGF binding to the EGFR were isolated from "immune" phage Nanobody repertoires. The selected antibody fragments were found to efficiently inhibit EGF binding to the EGFR without acting as receptor agonists themselves. In addition, they blocked EGF-mediated signalling and EGF-induced cell proliferation. In an in vivo murine xenograft model, the Nanobodies were effective in delaying the outgrowth of A431-derived solid tumours. This is the first report describing the successful use of untagged Nanobodies for the in vivo treatment of solid tumours. The results show that functional phage antibody selection, coupled to the rational design of Nanobodies, permits the rapid development of novel anti-cancer antibody-based therapeutics.

353 citations


Authors

Showing all 362 results

Network Information
Related Institutions (5)
Novartis
50.5K papers, 1.9M citations

82% related

Genentech
17.1K papers, 1.4M citations

82% related

Pfizer
37.4K papers, 1.6M citations

82% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

82% related

St. Jude Children's Research Hospital
19.2K papers, 1.2M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202112
202010
201912
201822
201716