scispace - formally typeset
Search or ask a question
Institution

CTLGroup

About: CTLGroup is a based out in . It is known for research contribution in the topics: Mortar & Alkali–silica reaction. The organization has 12 authors who have published 12 publications receiving 323 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, air-coupled impact-echo is successfully applied for nondestructive evaluation of concrete slabs containing artificial delaminations and voids, where an air-coverage scan is conducted over the entire slab area and defects are located in the generated two-dimensional contour image.
Abstract: In this paper, air-coupled impact-echo is successfully applied for nondestructive evaluation of concrete. The air-coupled sensor is a small (6.3 mm diameter) measurement microphone located several centimeters above the top surface of the concrete being evaluated. Unwanted ambient acoustic noise is attenuated by a specially designed sound insulation enclosure. Test results show that air-coupled sensors are effective for impact-echo when appropriate impactors are used. Impact-echo data obtained by air-coupled sensors are equivalent to those obtained by conventional contact sensors. Test results from concrete slabs containing artificial delaminations and voids are reported, where an air-coupled impact-echo scan is conducted over the entire slab area. Defects are located in the generated two-dimensional contour image. The areal size of defects are accurately determined when the measurement point spacing in the scan is smaller than half of the expected defect size. Test results from air-coupled impact-echo scans carried out over internal metal and plastic ducts within another concrete slab are also reported. The goal of the experiment is to investigate the grouting condition inside the ducts. Impact-echo line scan images differentiate poorly grouted sections from the well-grouted sections within the metal duct.

157 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of various steel-concrete interface (SCI) characteristics on the susceptibility of reinforced concrete to corrosion was investigated and the authors found that the different SCI characteristics have received highly unbalanced research attention.
Abstract: The steel–concrete interface (SCI) is known to influence corrosion of steel in concrete. However, due to the numerous factors affecting the SCI—including steel properties, concrete properties, execution, and exposure conditions—it remains unclear which factors have the most dominant impact on the susceptibility of reinforced concrete to corrosion. In this literature review, prepared by members of RILEM technical committee 262-SCI, an attempt is made to elucidate the effect of numerous SCI characteristics on chloride-induced corrosion initiation of steel in concrete. We use a method to quantify and normalize the effect of individual SCI characteristics based on different literature results, which allows comparing them in a comprehensive context. It is found that the different SCI characteristics have received highly unbalanced research attention. Parameters such as w/b ratio and cement type have been studied most extensively. Interestingly, however, literature consistently indicates that those parameters have merely a moderate effect on the corrosion susceptibility of steel in concrete. Considerably more pronounced effects were identified for (1) steel properties, including metallurgy, presence of mill scale or rust layers, and surface roughness, and (2) the moisture state. Unfortunately, however, these aspects have received comparatively little research attention. Due to their apparently strong influence, future corrosion studies as well as developments towards predicting corrosion initiation in concrete would benefit from considering those aspects. Particularly the working mechanisms related to the moisture conditions in microscopic and macroscopic voids at the SCI is complex and presents major opportunities for further research in corrosion of steel in concrete.

89 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical parametric study was conducted to provide a database of maximum forces in the longitudinal joint and these maximum forces were then used to determine the loading demand necessary in the slab testing due to the service live load.
Abstract: This companion paper focuses on an investigation of improved continuous longitudinal joint details for decked precast prestressed concrete girder bridge systems. Precast concrete girders with an integral deck, which are cast and prestressed with the girder, provide benefits of rapid construction along with improved structural performance and durability. Despite these advantages, the use of this type of construction has been limited to isolated regions of the United States. One of the issues limiting more widespread use is the perceived problem with durability of longitudinal joints used to connect adjacent girders. Four full-scale slabs connected by No. 16 (#5) headed reinforcement detail using a 152 mm (6 in.) lap length were fabricated and tested. An analytical parametric study was conducted to provide a database of maximum forces in the longitudinal joint. These maximum forces are then used to determine the loading demand necessary in the slab testing due to the service live load. Static and fatigue te...

44 citations

Journal ArticleDOI
TL;DR: In this paper, a fiber optic displacement serial array was designed for measuring the crack opening displacement reversals at the plastic hinge areas, and a simple damage assessment method that considers the effect of cyclic loading on the state of damage was proposed.

42 citations

Journal ArticleDOI
TL;DR: Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains-East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma as discussed by the authors.
Abstract: Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains–East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma. This injection complex consists of deformed sheets and other bodies emplaced syntectonically into a stratigraphic framework of marble, calc-silicate rocks, quartzite, schist, and other granitoids. Bodies of pegmatitic granite coalesce around host-rock remnants, which preserve relict or ghost stratigraphy, thrusts, and fold nappes. Intrusion inflated but did not disrupt the host-rock structure. The pegmatitic granite increases proportionally downward from structurally high positions to the bottoms of 1-km-deep canyons where it constitutes 95%–100% of the rock. Zircon and monazite dated by U-Pb (sensitive high-resolution ion microprobe, SHRIMP) for this rock type cluster diffusely at ages near 92, 82(?), 69, 38, and 29 Ma, and indicate successive or rejuvenated igneous crystallization multiple times over long periods of the Late Cretaceous and the Paleogene. Initial partial melting of unexposed pelites may have generated granite forerunners, which were remobilized several times in partial melting events. Sources for the pegmatitic granite differed isotopically from sources of similar-aged interleaved equigranular granites. Dominant Late Cretaceous and fewer Paleogene ages recorded from some pegmatitic granite samples, and Paleogene-only ages from the two structurally deepest samples, together with varying zircon trace element contents, suggest several disparate ages of final emplacement or remobilization of various small bodies. Folded sills that merge with dikes that cut the same folds suggest that there may have been in situ partial remobilization. The pegmatitic granite intrusions represent prolonged and recurrent generation, assembly, and partial melting modification of a batholithic volume even while the regional tectonic environment varied dramatically from contractile thickening to extension and mafic underplating.

30 citations


Authors
Network Information
Related Institutions (5)
Cold Regions Research and Engineering Laboratory
1.6K papers, 76.7K citations

77% related

Japan Agency for Marine-Earth Science and Technology
10.6K papers, 315.9K citations

76% related

Central Research Institute of Electric Power Industry
6.5K papers, 126.4K citations

74% related

Kitami Institute of Technology
3.3K papers, 43.9K citations

74% related

Jacobs Engineering Group
1.6K papers, 25.9K citations

74% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20191
20172
20151
20113
20101