scispace - formally typeset
Search or ask a question
Institution

Frankfurt Institute for Advanced Studies

FacilityFrankfurt am Main, Germany
About: Frankfurt Institute for Advanced Studies is a facility organization based out in Frankfurt am Main, Germany. It is known for research contribution in the topics: Baryon & Quark–gluon plasma. The organization has 798 authors who have published 2733 publications receiving 82799 citations. The organization is also known as: FIAS.


Papers
More filters
Journal ArticleDOI
01 Jan 2018
TL;DR: This article explores promising points of contact between philosophy and the expanding field of virtual reality research by presenting a range of concrete examples characterized by high theoretical relevance and heuristic fecundity, and proposes a series of new research targets.
Abstract: This article explores promising points of contact between philosophy and the expanding field of virtual reality research Aiming at an interdisciplinary audience, it proposes a series of new research targets by presenting a range of concrete examples characterized by high theoretical relevance and heuristic fecundity Among these examples are conscious experience itself, “Bayesian” and social VR, amnestic re-embodiment, merging human-controlled avatars and virtual agents, virtual ego-dissolution, controlling the reality/virtuality continuum, the confluence of VR and artificial intelligence (AI) as well as of VR and functional magnetic resonance imaging (fMRI), VR-based social hallucinations and the emergence of a virtual Lebenswelt, religious faith and practical phenomenology Hopefully, these examples can serve as first proposals for intensified future interaction and mark out some potential new directions for research

40 citations

Journal ArticleDOI
TL;DR: In this paper, the semiclassical spin-orbit interaction potential is compared with the microscopic shell model formulation, at both the ground state and finite temperatures, and the role of temperature is found not to change the behavior of shell or nucleus structure effects up to about 3 MeV, and increase or decrease the height of the (normalized) barriers in accordance with the shell structure of nuclei.
Abstract: The semiclassical formulation of the Skyrme energy density functional for spin-orbit density part of the interaction potential is compared with the microscopic shell model formulation, at both the ground state and finite temperatures. The semiclassical spin-orbit interaction potential is shown to contain exactly the same shell effects as are there in the microscopic shell model, provided a normalization of all semiclassical results to the spin-saturated case (for one or both nuclei as spin-saturated) is made. On the other hand, the \ensuremath{\alpha} nucleus structure present in microscopic shell model is found absent in semiclassical approach. The role of temperature is found not to change the behavior of shell or \ensuremath{\alpha} nucleus structure effects up to about 3 MeV, and increase or decrease the height of the (normalized) barriers in accordance with the shell structure of nuclei. Calculations are made for three two-nucleon transfer reactions forming the \ensuremath{\alpha}-nucleus $A=4n,N=Z$ compound systems ${}^{56}{\mathrm{Ni}}^{*}$ and ${}^{48}{\mathrm{Cr}}^{*}$ and the non-\ensuremath{\alpha}-nucleus compound system ${}^{52}{\mathrm{Cr}}^{*}$, and for Skyrme forces SIII and SLy4. The two parameter Fermi density, with its parameters fitted to experiments and made temperature dependent in a model way, is used for the nuclear density in semiclassical calculations, and the same in microscopic shell model is achieved via the Fermi-Dirac occupation of shell model states and particle number conservation.

40 citations

Journal ArticleDOI
TL;DR: In this article, the authors used very-long-baseline-interferometry (VLBI) images of Sagittarius A* (Sgr A*) carried out by the Event-Horizon-Telescope Collaboration (EHTC) to determine if they correspond to a Kerr BH as predicted by Einstein's theory of general relativity (GR) or to a BH in alternative theories of gravity.
Abstract: Our Galactic Center, Sagittarius A* (Sgr A*), is believed to harbour a supermassive black hole (BH), as suggested by observations tracking individual orbiting stars. Upcoming sub-millimetre very-long-baseline-interferometry (VLBI) images of Sgr A* carried out by the Event-Horizon-Telescope Collaboration (EHTC) are expected to provide critical evidence for the existence of this supermassive BH. We assess our present ability to use EHTC images to determine if they correspond to a Kerr BH as predicted by Einstein's theory of general relativity (GR) or to a BH in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical (GRMHD) simulations and use general-relativistic radiative transfer (GRRT) calculations to generate synthetic shadow images of a magnetised accretion flow onto a Kerr BH. In addition, and for the first time, we perform GRMHD simulations and GRRT calculations for a dilaton BH, which we take as a representative solution of an alternative theory of gravity. Adopting the VLBI configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between BHs from different theories of gravity, thus highlighting that great caution is needed when interpreting BH images as tests of GR.

40 citations

Book ChapterDOI
01 Jan 2010
TL;DR: In this paper, the statistical hadronization picture for charmonium production in ultra-relativistic nuclear collisions is reviewed, with a brief reminder of the status of the thermal model description of hadron production at high energy, and an excellent account is achieved of all data for hadrons built of valence quarks using temperature, baryo-chemical potential and volume as thermal parameters.
Abstract: We review the statistical hadronization picture for charmonium production in ultra-relativistic nuclear collisions. Our starting point is a brief reminder of the status of the thermal model description of hadron production at high energy. Within this framework an excellent account is achieved of all data for hadrons built of (u,d,s) valence quarks using temperature, baryo-chemical potential and volume as thermal parameters. The large charm quark mass brings in a new (non-thermal) scale which is explicitely taken into account by fixing the total number of charm quarks produced in the collision. Emphasis is placed on the description of the physical basis for the resulting statistical hadronization model. We discuss the evidence for statistical hadronization of charmonia by analysis of recent data from the SPS and RHIC accelerators. Furthermore we discuss an extension of this model towards lower beam energies and develop arguments about the prospects to observe medium modifications of open and hidden charm hadrons. With the imminent start of the LHC accelerator at CERN, exciting prospects for charmonium production studies at the very high energy frontier come into reach. We present arguments that, at such energies, charmonium production becomes a fingerprint of deconfinement: even if no charmonia survive in the quark-gluon plasma, statistical hadronization at the QCD phase boundary of the many tens of charm quarks expected in a single central Pb-Pb collision could lead to an enhanced, rather than suppressed production probability when compared to results for nucleon-nucleon reactions scaled by the number of hard collisions in the Pb-Pb system.

40 citations

Journal ArticleDOI
TL;DR: Simulation results show that control-based techniques can reduce the amount of medication while simultaneously reach the efficacy levels of the treatment schedules by the Food and Drug Administration.
Abstract: Influenza A virus infections are causes of severe illness resulting in high levels of mortality. Neuraminidase inhibitors such as zanamivir and oseltamivir are used to treat influenza; however, treatment recommendations remain debatable. In this paper, a discrete-time inverse optimal impulsive control scheme based on passivation is proposed to address the antiviral treatment scheduling problem. We adapt results regarding stability, passivity, and optimality for the impulsive action. The study is founded on mathematical models whose parameters are adjusted to data from clinical trials where participants were experimentally infected with influenza H1N1 and treated with either zanamivir or oseltamivir. Simulation results show that control-based techniques can reduce the amount of medication while simultaneously reach the efficacy levels of the treatment schedules by the Food and Drug Administration. Monte Carlo simulations disclose the robustness of the proposed control-based techniques.

40 citations


Authors

Showing all 809 results

NameH-indexPapersCitations
Wolf Singer12458072591
Peter Braun-Munzinger10052734108
R. Stock9642934877
G. Kozlov9033936161
Luciano Rezzolla9039426159
Walter Greiner84128251857
Igor Pshenichnov8336222699
Xiaofeng Zhu80106228158
Mikolaj Krzewicki7728418908
Ivan Kisel7538918330
David Edmund Johannes Linden7436118787
David Michael Rohr7121715111
Sergey Gorbunov7125815638
M. Bach7112314661
Miklos Gyulassy6935819140
Network Information
Related Institutions (5)
Brookhaven National Laboratory
39.4K papers, 1.7M citations

87% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

85% related

CERN
47.1K papers, 1.7M citations

85% related

Max Planck Society
406.2K papers, 19.5M citations

85% related

Argonne National Laboratory
64.3K papers, 2.4M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202312
202224
2021172
2020155
2019172
2018219