scispace - formally typeset
Search or ask a question
Institution

Frankfurt Institute for Advanced Studies

FacilityFrankfurt am Main, Germany
About: Frankfurt Institute for Advanced Studies is a facility organization based out in Frankfurt am Main, Germany. It is known for research contribution in the topics: Baryon & Quark–gluon plasma. The organization has 798 authors who have published 2733 publications receiving 82799 citations. The organization is also known as: FIAS.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the traditional derivation of the fluid-dynamical equations from kinetic theory according to Israel and Stewart is reviewed, and it is shown that their procedure to close the fluid dynamical equations of motion is not unique.
Abstract: We review the traditional derivation of the fluid-dynamical equations from kinetic theory according to Israel and Stewart. We show that their procedure to close the fluid-dynamical equations of motion is not unique. Their approach contains two approximations, the first being the so-called 14-moment approximation to truncate the single-particle distribution function. The second consists in the choice of equations of motion for the dissipative currents. Israel and Stewart used the second moment of the Boltzmann equation, but this is not the only possible choice. In fact, there are infinitely many moments of the Boltzmann equation which can serve as equations of motion for the dissipative currents. All resulting equations of motion have the same form, but the transport coefficients are different in each case.

55 citations

Journal ArticleDOI
TL;DR: In this paper, a parton-hadron-string dynamics (PHSD) off-shell transport approach was used to solve generalized transport equations for the Green's functions in the phase-space representation.
Abstract: We address dilepton production in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s{}_{NN}}=200$ GeV by employing the parton-hadron-string dynamics (PHSD) off-shell transport approach. Within the PHSD, one goes beyond the quasiparticle approximation by solving generalized transport equations on the basis of the off-shell Kadanoff-Baym equations for the Green's functions in the phase-space representation. The approach consistently describes the full evolution of a relativistic heavy-ion collision, from the initial hard scatterings and string formation, through the dynamical deconfinement phase transition to the quark-gluon plasma (QGP) as well as hadronization, to the subsequent interactions in the hadronic phase. With partons described in the PHSD by the dynamical quasiparticle model (DQPM)---matched to reproduce lattice QCD results in thermodynamic equilibrium---we calculate, in particular, the dilepton radiation from partonic interactions through the reactions $q\overline{q}\ensuremath{\rightarrow}{\ensuremath{\gamma}}^{*}$, $q\overline{q}\ensuremath{\rightarrow}{\ensuremath{\gamma}}^{*}+g$, and $qg\ensuremath{\rightarrow}{\ensuremath{\gamma}}^{*}q$ ($\overline{q}g\ensuremath{\rightarrow}{\ensuremath{\gamma}}^{*}\overline{q}$) in the early stage of relativistic heavy-ion collisions. By comparing our results to the data from the PHENIX Collaboration, we study the relative importance of different dilepton production mechanisms and point out the regions in phase space where partonic channels are dominant. Furthermore, explicit predictions are presented for dileptons within the acceptance of the STAR detector system and compared to the preliminary data.

55 citations

Journal ArticleDOI
TL;DR: This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.
Abstract: An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC50 = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC50 = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.

55 citations

Journal ArticleDOI
TL;DR: The neural representation of synaesthetic colors closely resembles that of real colors, which suggests involvement of early stages of visual processing in color synaesthesia and explains the vivid and realistic nature of Synaesthetic experiences.
Abstract: Grapheme-color synaesthesia is a rare condition in which perception of a letter or a digit is associated with concurrent perception of a color. Synaesthetes report that these color experiences are vivid and realistic. We used a Stroop task to show that synaesthetically induced color, like real color, is processed in color-opponent channels (red-green or blue-yellow). Synaesthetic color produced maximal interference with the perception and naming of the real color of a grapheme if the real color was opponent to the synaesthetic color. Interference was reduced considerably if the synaesthetic and real colors engaged different color channels (e.g., synaesthetic blue and real red). No dependence on color opponency was found for semantic conflicts between shape and color (e.g., a blue lemon). Thus, the neural representation of synaesthetic colors closely resembles that of real colors. This suggests involvement of early stages of visual processing in color synaesthesia and explains the vivid and realistic natur...

55 citations


Authors

Showing all 809 results

NameH-indexPapersCitations
Wolf Singer12458072591
Peter Braun-Munzinger10052734108
R. Stock9642934877
G. Kozlov9033936161
Luciano Rezzolla9039426159
Walter Greiner84128251857
Igor Pshenichnov8336222699
Xiaofeng Zhu80106228158
Mikolaj Krzewicki7728418908
Ivan Kisel7538918330
David Edmund Johannes Linden7436118787
David Michael Rohr7121715111
Sergey Gorbunov7125815638
M. Bach7112314661
Miklos Gyulassy6935819140
Network Information
Related Institutions (5)
Brookhaven National Laboratory
39.4K papers, 1.7M citations

87% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

85% related

CERN
47.1K papers, 1.7M citations

85% related

Max Planck Society
406.2K papers, 19.5M citations

85% related

Argonne National Laboratory
64.3K papers, 2.4M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202312
202224
2021172
2020155
2019172
2018219