scispace - formally typeset
Search or ask a question
Institution

Japan Aerospace Exploration Agency

FacilityTokyo, Japan
About: Japan Aerospace Exploration Agency is a facility organization based out in Tokyo, Japan. It is known for research contribution in the topics: Galaxy & Telescope. The organization has 4327 authors who have published 12054 publications receiving 208330 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the PANDA-fiber Bragg grating (FBG) for simultaneous distributed strain and temperature measurement for structural health monitoring (SHM).
Abstract: In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to identify some kind of existing damages or applied loads in implementation of SHM. The fiber-optic distributed sensors developed by the authors have been applied to the damage detection of a single-lap joint and load identification of a beam simply supported. We confirmed that the applicability of the distributed sensor to SHM could be improved as making the spatial resolution higher. In addition, we showed that the simulation technique considering both structural and optical effects seamlessly in strain measurement could be powerful tools to evaluate the performance of a sensing system and design it for SHM. Finally, the technique for simultaneous distributed strain and temperature measurement using the PANDA-fiber Bragg grating (FBG) is shown in this paper, because problems caused by the cross-sensitivity toward strain and temperature would be always inevitable in strain measurement for SHM.

70 citations

Journal ArticleDOI
TL;DR: In this paper, the authors carried out three observations of AWM 7, for the central region and 200-east and 200west offset regions, with Suzaku, and measured out to 270'570 h 1 70 kpc, which corresponded to 0.35r180.
Abstract: We carried out 3 observations of the cluster of galaxies AWM 7, for the central region and 200-east and 200-west offset regions, with Suzaku. Temperature and abundance profiles were measured out to 270 ' 570 h 1 70 kpc, which corresponded to 0.35r180. The temperature of the intra-cluster medium (ICM) slightly decreased from 3.8 keV at the center to 3.4 keV in the 0.35 r180 region, indicating a flatter profile than those in other nearby clusters. The abundance ratio of Si to Fe was almost constant in our observations, while the Mg-to-Fe ratio increased with radius from the cluster center. The O to Fe ratio in the west region showed an increase with radius, while that in the east region was almost flat, though the errors were relatively large. These features suggest that the enrichment process is significantly different between products of type II supernovae (O and Mg) and those by type Ia supernovae (Si and Fe). We also examined the positional shift of the central energy of a He-like Fe-K line, in search of possible rotation of the ICM. The 90% upper limit for the line-of-sight velocity difference was derived to be ∆v . 2000 km s , suggesting that the ellipticity of AWM 7 is rather caused by a recent directional infall of gas along the large-scale filament.

70 citations

Journal ArticleDOI
TL;DR: In this article, a satellite aerosol retrieval algorithm was developed to utilize a near-ultraviolet band of the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI).
Abstract: [1] A satellite aerosol retrieval algorithm was developed to utilize a near-ultraviolet band of the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI). At near-ultraviolet wavelengths, the surface reflectance over land is smaller than that at visible wavelengths. Therefore, it is thought possible to reduce retrieval error by using the near-ultraviolet spectral region. In the present study, we first developed a cloud shadow detection algorithm that uses first and second minimum reflectances of 380 nm and 680 nm based on the difference in Rayleigh scattering contribution for these two bands. Then, we developed a new surface reflectance correction algorithm, the modified Kaufman method, which uses minimum reflectance data at 680 nm and the NDVI to estimate the surface reflectance at 380 nm. This algorithm was found to be particularly effective at reducing the aerosol effect remaining in the 380 nm minimum reflectance; this effect has previously proven difficult to remove owing to the infrequent sampling rate associated with the three-day recursion period of GOSAT and the narrow CAI swath of 1000 km. Finally, we applied these two algorithms to retrieve aerosol optical thicknesses over a land area. Our results exhibited better agreement with sun-sky radiometer observations than results obtained using a simple surface reflectance correction technique using minimum radiances.

70 citations

Journal ArticleDOI
TL;DR: It is shown for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.
Abstract: Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth's magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin-Helmholtz instability driven by a super-Alfvenic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin-Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed by the Magnetospheric Multiscale (MMS) spacecraft. Here, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin-Helmholtz instability.

70 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the spectrum of 1H 0707−495 is sculpted more by absorption in a wind than by extreme relativistic effects in strong gravity.
Abstract: 1H 0707−495 is the most convincing example of a supermassive black hole with an X-ray spectrum being dominated by extremely smeared, relativistic reflection, with the additional requirement of strongly supersolar iron abundance. However, here we show that the iron features in its 2–10 keV spectrum are rather similar to the archetypal wind dominated source, PDS 456. We fit all the 2–10 keV spectra from 1H 0707−495 using the same wind model as used for PDS 456, but viewed at higher inclination so that the iron absorption line is broader but not so blueshifted. This gives a good overall fit to the data from 1H 0707−495, and an extrapolation of this model to higher energies also gives a good match to the NuSTAR data. Small remaining residuals indicate that the iron line emission is stronger than in PDS 456. This is consistent with the wider angle wind expected from a continuum-driven wind from the super-Eddington mass accretion rate in 1H 0707−495, and/or the presence of residual reflection from the underlying disc though the presence of the absorption line in the model removes the requirement for highly relativistic smearing, and highly supersolar iron abundance. We suggest that the spectrum of 1H 0707−495 is sculpted more by absorption in a wind than by extreme relativistic effects in strong gravity.

70 citations


Authors

Showing all 4340 results

NameH-indexPapersCitations
Yasushi Fukazawa13588264424
Jun Kataoka12160354274
Tadayuki Takahashi11293257501
Takaaki Tanaka10532141804
Yasunobu Uchiyama10537339610
Satoshi Tanaka9673976264
Masashi Hazumi8770829603
K. Izumi8422953205
Carolus J. Schrijver8129729858
Satoru Takahashi7958928007
Chris Done7945723210
Yasuo Doi7937033445
Poshak Gandhi7548118419
Alan M. Title7420321923
Yoshihiro Ueda7257625787
Network Information
Related Institutions (5)
Goddard Space Flight Center
63.3K papers, 2.7M citations

87% related

Ames Research Center
35.8K papers, 1.3M citations

87% related

California Institute of Technology
146.6K papers, 8.6M citations

86% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

84% related

Tokyo Institute of Technology
101.6K papers, 2.3M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202245
2021557
2020672
2019721
2018704