scispace - formally typeset
Search or ask a question
Institution

Japan Aerospace Exploration Agency

FacilityTokyo, Japan
About: Japan Aerospace Exploration Agency is a facility organization based out in Tokyo, Japan. It is known for research contribution in the topics: Galaxy & Telescope. The organization has 4327 authors who have published 12054 publications receiving 208330 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors assess the possibility of detecting and characterizing the physical state of the missing baryons at low redshift by analyzing the X-ray absorption spectra of the gamma-ray burst (GRB) afterglows, measured by a microcalorimeter-based detector with 3 eV resolution and 1000 cm2 effective area and capable of fast repointing.
Abstract: We assess the possibility of detecting and characterizing the physical state of the missing baryons at low redshift by analyzing the X-ray absorption spectra of the gamma-ray burst (GRB) afterglows, measured by a microcalorimeter-based detector with 3 eV resolution and 1000 cm2 effective area and capable of fast repointing, similar to that on board of the recently proposed X-ray satellites EDGE and XENIA. For this purpose we have analyzed mock absorption spectra extracted from different hydrodynamical simulations used to model the properties of the warm hot intergalactic medium (WHIM). These models predict the correct abundance of O VI absorption lines observed in UV and satisfy current X-ray constraints. According to these models space missions such as EDGE and XENIA should be able to detect ~60 WHIM absorbers per year through the O VII line. About 45% of these have at least two more detectable lines in addition to O VII that can be used to determine the density and the temperature of the gas. Systematic errors in the estimates of the gas density and temperature can be corrected for in a robust, largely model-independent fashion. The analysis of the GRB absorption spectra collected in three years would also allow to measure the cosmic mass density of the WHIM with ~15% accuracy, although this estimate depends on the WHIM model. Our results suggest that GRBs represent a valid, if not preferable, alternative to active galactic nuclei to study the WHIM in absorption. The analysis of the absorption spectra nicely complements the study of the WHIM in emission that the spectrometer proposed for EDGE and XENIA would be able to carry out thanks to its high sensitivity and large field of view.

54 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature on rim width calculations, summarizing the case for magnetic field amplification was presented, including an arbitrary power-law dependence of the diffusion coefficient on energy, D∝E {sup μ}.
Abstract: Several young supernova remnants, including SN 1006, emit synchrotron X-rays in narrow filaments, hereafter thin rims, along their periphery. The widths of these rims imply 50-100 μG fields in the region immediately behind the shock, far larger than expected for the interstellar medium compressed by unmodified shocks, assuming electron radiative losses limit rim widths. However, magnetic field damping could also produce thin rims. Here we review the literature on rim width calculations, summarizing the case for magnetic field amplification. We extend these calculations to include an arbitrary power-law dependence of the diffusion coefficient on energy, D∝E {sup μ}. Loss-limited rim widths should shrink with increasing photon energy, while magnetic-damping models predict widths almost independent of photon energy. We use these results to analyze Chandra observations of SN 1006, in particular the southwest limb. We parameterize the FWHM in terms of energy as FWHM ∝E{sub γ}{sup m{sub E}}. Filament widths in SN 1006 decrease with energy; m{sub E} ∼ –0.3 to –0.8, implying magnetic field amplification by factors of 10-50, above the factor of four expected in strong unmodified shocks. For SN 1006, the rapid shrinkage rules out magnetic damping models. It also favors short mean free paths (small diffusion coefficients)more » and strong dependence of D on energy (μ ≥ 1).« less

54 citations

Journal ArticleDOI
TL;DR: An over-ocean rainfall retrieval algorithm for the Advanced Microwave Sounding Unit (AMSU) based on the Global Satellite Mapping of Precipitation (GSMaP) microwave radiometer algorithm is developed that has better agreement with TRMM estimates over midlatitudes during winter.
Abstract: We develop an over-ocean rainfall retrieval algorithm for the Advanced Microwave Sounding Unit (AMSU) based on the Global Satellite Mapping of Precipitation (GSMaP) microwave radiometer algorithm. This algorithm combines an emission-based estimate from brightness temperature (Tb) at 23 GHz and a scattering-based estimate from Tb at 89 GHz, depending on a scattering index (SI) computed from Tb at both 89 and 150 GHz. Precipitation inhomogeneities are also taken into account. The GSMaP-retrieved rainfall from the AMSU (GSMaP_AMSU) is compared with the National Oceanic and Atmospheric Administration (NOAA) standard algorithm (NOAA_AMSU)-retrieved data using Tropical Rainfall Measuring Mission (TRMM) data as a reference. Rain rates retrieved by GSMaP_AMSU have better agreement with TRMM estimates over midlatitudes during winter. Better estimates over multitudes over winter are given by the use of Tb at 23 GHz in the GSMaP_AMSU algorithm. It was also shown that GSMaP_AMSU has higher rain detection than NOAA_AMSU.

54 citations

Journal ArticleDOI
TL;DR: In this article, an 8-band optical to near-infrared deep photometric catalog based on the observations made with MegaCam and WIRCam at the CFHT, and compute photometric redshifts, z p in the north ecliptic pole (NEP) region.
Abstract: Aims. We present an 8-band (u ∗ , g ′, r ′, i ′, z ′, Y , J , K s ) optical to near-infrared deep photometric catalog based on the observations made with MegaCam and WIRCam at the CFHT, and compute photometric redshifts, z p in the north ecliptic pole (NEP) region. AKARI infrared satellite carried out a deep survey in the NEP region at near- to mid-infrared wavelengths. Our optical to near-infrared catalog allows us to identify the counterparts and z p for the AKARI sources. Methods. We obtained seven-band (g ′, r ′, i ′, z ′, Y , J , K s ) imaging data, and we crossmatched them with existing u ∗ -band data (limiting magnitude = 24.6 mag [5σ ; AB]) to design the band-merged catalog. We included all z ′-band sources with counterparts in at least one of the other bands in the catalog. We used a template-fitting methods to compute z p for all the cataloged sources. Results. The estimated 4σ detection limits within a 1 arcsec aperture radius are 26.7, 25.9, 25.1, and 24.1 mag [AB] for the optical g ′, r ′, i ′, and z ′-bands and 23.4, 23.0, and 22.7 mag for the near-infrared Y , J , and K s -bands, respectively. There are a total of 85 797 sources in the band-merged catalog. An astrometric accuracy of this catalog determined by examining coordinate offsets with regard to 2MASS is 0.013 arcsec with a root mean square offset of 0.32 arcsec. We distinguish 5441 secure stars from extended sources using the u ∗ − J versus g ′ − K s colours, combined with the SExtractor stellarity index of the images. Comparing with galaxy spectroscopic redshifts, we find a photometric redshift dispersion, σ Δz /(1 + z ) , of 0.032 and catastrophic failure rate, Δz /(1 + z ) > 0.15, of 5.8% at z > 1. We extend the estimate of the z p uncertainty over the full magnitude/redshift space with a redshift probability distribution function and find that our redshifts are highly accurate with z ′ p ′ p ′z ′K s diagram, (1.4 star-forming galaxies, AKARI mid-infrared detected sources seem to be affected by stronger dust extinction compared with sources with non-detections in the AKARI mid-infrared bands.

54 citations

Proceedings ArticleDOI
TL;DR: The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) as discussed by the authors is a mission optimized for mid and far-infrared astronomy with a cryogenically cooled 3.2 m telescope.
Abstract: We present the overview and the current status of SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3.2 m telescope. SPICA has high spatial resolution and unprecedented sensitivity in the mid- and far-infrared, which will enable us to address a number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets. To reduce the mass of the whole mission, SPICA will be launched at ambient temperature and cooled down on orbit by mechanical coolers on board with an efficient radiative cooling system, a combination of which allows us to have a 3-m class cooled (6 K) telescope in space with moderate total weight (3.7t). SPICA is proposed as a Japanese-led mission together with extensive international collaboration. ESA's contribution to SPICA has been studied under the framework of the ESA Cosmic Vision. The consortium led by SRON is in charge of a key focal plane instrument SAFARI (SPICA Far-Infrared Instrument). Korea and Taiwan are also important partners for SPICA. US participation to SPICA is under discussion. The SPICA project is now in the "risk mitigation phase". The target launch year of SPICA is 2022.

54 citations


Authors

Showing all 4340 results

NameH-indexPapersCitations
Yasushi Fukazawa13588264424
Jun Kataoka12160354274
Tadayuki Takahashi11293257501
Takaaki Tanaka10532141804
Yasunobu Uchiyama10537339610
Satoshi Tanaka9673976264
Masashi Hazumi8770829603
K. Izumi8422953205
Carolus J. Schrijver8129729858
Satoru Takahashi7958928007
Chris Done7945723210
Yasuo Doi7937033445
Poshak Gandhi7548118419
Alan M. Title7420321923
Yoshihiro Ueda7257625787
Network Information
Related Institutions (5)
Goddard Space Flight Center
63.3K papers, 2.7M citations

87% related

Ames Research Center
35.8K papers, 1.3M citations

87% related

California Institute of Technology
146.6K papers, 8.6M citations

86% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

84% related

Tokyo Institute of Technology
101.6K papers, 2.3M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202245
2021557
2020672
2019721
2018704