scispace - formally typeset
Search or ask a question
Institution

Max Planck Society

NonprofitMunich, Germany
About: Max Planck Society is a nonprofit organization based out in Munich, Germany. It is known for research contribution in the topics: Galaxy & Population. The organization has 148289 authors who have published 406224 publications receiving 19522268 citations. The organization is also known as: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. & MPG.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that brown carbon may severely bias measurements of atmospheric "black carbon" and "elemental carbon" over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of C brown is high relative to that of soot carbon.
Abstract: Although the definition and measurement techniques for atmospheric "black carbon" ("BC") or "elemental carbon'' ("EC") have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ("brown carbon, C brown ") makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC) in the atmosphere. Evidence for the atmospheric presence of C brown comes from (1) spectral aerosol light absorption measurements near specific combustion sources, (2) observations of spectral properties of water extracts of continental aerosol, (3) laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4) indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of "BC" and "EC" over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of C brown is high relative to that of soot carbon. Chemical measurements to determine "EC" are biased by the refractory nature of C brown as well as by complex matrix interferences. Optical measurements of "BC" suffer from a number of problems: (1) many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2) there is no unique conversion factor between light absorption and "EC" or "BC" concentration in ambient aerosols, and (3) the difference in spectral properties between the different types of LAC, as well as the chemical complexity of C brown , lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of C brown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our understanding of tropospheric processes, including their influence on UV-irradiance, atmospheric photochemistry and radiative transfer in clouds.

1,706 citations

Journal ArticleDOI
TL;DR: In this article, the stellar kinematics of the solar neighbourhood in terms of the velocity υ� of the Sun with respect to the local standard of rest were examined. But the results were not robust to the metallicity gradient in the disc, which introduces a correlation between the colour of a group of stars and the radial gradients of its properties.
Abstract: We re-examine the stellar kinematics of the solar neighbourhood in terms of the velocity υ� of the Sun with respect to the local standard of rest. We show that the classical determination of its component Vin the direction of Galactic rotation via Str¨ omberg's relation is undermined by the metallicity gradient in the disc, which introduces a correlation between the colour of a group of stars and the radial gradients of its properties. Comparing the local stellar kinematics to a chemodynamical model which accounts for these effects, we obtain (U, V, W)� = (11.1 +0.69 −0.75 , 12.24 +0.47 −0.47 ,7 .25 +0.37 −0.36 )k m s −1 , with additional systematic uncertainties ∼(1, 2, 0.5) km s −1 . In particular, Vis 7 km s −1 larger than previously estimated. The new values of (U, V, W)� are extremely insensitive to the metallicity gradient within the disc.

1,704 citations

Journal ArticleDOI
18 Sep 2003-Nature
TL;DR: The JAW locus is identified, which produces a microRNA that can guide messenger RNA cleavage of several TCP genes controlling leaf development, indicating that microRNA-mediated control of leaf morphogenesis is conserved in plants with very different leaf forms.
Abstract: Plants with altered microRNA metabolism have pleiotropic developmental defects, but direct evidence for microRNAs regulating specific aspects of plant morphogenesis has been lacking In a genetic screen, we identified the JAW locus, which produces a microRNA that can guide messenger RNA cleavage of several TCP genes controlling leaf development MicroRNA-guided cleavage of TCP4 mRNA is necessary to prevent aberrant activity of the TCP4 gene expressed from its native promoter In addition, overexpression of wild-type and microRNA-resistant TCP variants demonstrates that mRNA cleavage is largely sufficient to restrict TCP function to its normal domain of activity TCP genes with microRNA target sequences are found in a wide range of species, indicating that microRNA-mediated control of leaf morphogenesis is conserved in plants with very different leaf forms

1,701 citations

Journal ArticleDOI
TL;DR: This work highlights how the interplay between aggregation and crystallization can give rise to mesoscale self-assembly and cooperative transformation and reorganization of hybrid inorganic-organic building blocks to produce single-crystal mosaics, nanoparticle arrays, and emergent nanostructures with complex form and hierarchy.
Abstract: The organization of nanostructures across extended length scales is a key challenge in the design of integrated materials with advanced functions. Current approaches tend to be based on physical methods, such as patterning, rather than the spontaneous chemical assembly and transformation of building blocks across multiple length scales. It should be possible to develop a chemistry of organized matter based on emergent processes in which time- and scale-dependent coupling of interactive components generate higher-order architectures with embedded structure. Herein we highlight how the interplay between aggregation and crystallization can give rise to mesoscale self-assembly and cooperative transformation and reorganization of hybrid inorganic-organic building blocks to produce single-crystal mosaics, nanoparticle arrays, and emergent nanostructures with complex form and hierarchy. We propose that similar mesoscale processes are also relevant to models of matrix-mediated nucleation in biomineralization.

1,697 citations

Journal ArticleDOI

1,696 citations


Authors

Showing all 148365 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Albert Hofman2672530321405
Graham A. Colditz2611542256034
Michael Grätzel2481423303599
Guido Kroemer2361404246571
George Davey Smith2242540248373
Matthias Mann221887230213
Yi Chen2174342293080
Eric N. Olson206814144586
Ronald M. Evans199708166722
Hans Clevers199793169673
Raymond J. Dolan196919138540
David J. Schlegel193600193972
Simon D. M. White189795231645
George Efstathiou187637156228
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

94% related

California Institute of Technology
146.6K papers, 8.6M citations

93% related

Spanish National Research Council
220.4K papers, 7.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022371
202114,895
202016,697
201916,602
201816,160