scispace - formally typeset
Search or ask a question
Institution

Max Planck Society

NonprofitMunich, Germany
About: Max Planck Society is a nonprofit organization based out in Munich, Germany. It is known for research contribution in the topics: Galaxy & Population. The organization has 148289 authors who have published 406224 publications receiving 19522268 citations. The organization is also known as: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. & MPG.


Papers
More filters
Book ChapterDOI
01 Nov 2013
TL;DR: In this article, an overview of model capabilities as assessed in this chapter, including improvements, or lack thereof, relative to models assessed in the AR4, is presented, along with an assessment of recent work connecting model performance to the detection and attribution of climate change as well as to future projections.
Abstract: Climate models have continued to be developed and improved since the AR4, and many models have been extended into Earth System models by including the representation of biogeochemical cycles important to climate change. These models allow for policy-relevant calculations such as the carbon dioxide (CO2) emissions compatible with a specified climate stabilization target. In addition, the range of climate variables and processes that have been evaluated has greatly expanded, and differences between models and observations are increasingly quantified using ‘performance metrics’. In this chapter, model evaluation covers simulation of the mean climate, of historical climate change, of variability on multiple time scales and of regional modes of variability. This evaluation is based on recent internationally coordinated model experiments, including simulations of historic and paleo climate, specialized experiments designed to provide insight into key climate processes and feedbacks and regional climate downscaling. Figure 9.44 provides an overview of model capabilities as assessed in this chapter, including improvements, or lack thereof, relative to models assessed in the AR4. The chapter concludes with an assessment of recent work connecting model performance to the detection and attribution of climate change as well as to future projections.

1,686 citations

Journal ArticleDOI
TL;DR: It is shown that the nanocomposites in nature exhibit a generic mechanical structure in which the nanometer size of mineral particles is selected to ensure optimum strength and maximum tolerance of flaws (robustness) and the widely used engineering concept of stress concentration at flaws is no longer valid for nanomaterial design.
Abstract: Natural materials such as bone, tooth, and nacre are nanocomposites of proteins and minerals with superior strength. Why is the nanometer scale so important to such materials? Can we learn from this to produce superior nanomaterials in the laboratory? These questions motivate the present study where we show that the nanocomposites in nature exhibit a generic mechanical structure in which the nanometer size of mineral particles is selected to ensure optimum strength and maximum tolerance of flaws (robustness). We further show that the widely used engineering concept of stress concentration at flaws is no longer valid for nanomaterial design.

1,681 citations

Journal ArticleDOI
TL;DR: GALFIT as discussed by the authors is a 2D fitting algorithm that allows for irregular, curved, logarithmic and power-law spirals, ring, and truncated shapes in otherwise traditional parametric functions.
Abstract: We present a two-dimensional (2D) fitting algorithm (GALFIT, ver. 3) with new capabilities to study the structural components of galaxies and other astronomical objects in digital images. Our technique improves on previous 2D fitting algorithms by allowing for irregular, curved, logarithmic and power-law spirals, ring, and truncated shapes in otherwise traditional parametric functions like the Sersic, Moffat, King, Ferrer, etc., profiles. One can mix and match these new shape features freely, with or without constraints, and apply them to an arbitrary number of model components of numerous profile types, so as to produce realistic-looking galaxy model images. Yet, despite the potential for extreme complexity, the meaning of the key parameters like the Sersic index, effective radius, or luminosity remains intuitive and essentially unchanged. The new features have an interesting potential for use to quantify the degree of asymmetry of galaxies, to quantify low surface brightness tidal features beneath and beyond luminous galaxies, to allow more realistic decompositions of galaxy subcomponents in the presence of strong rings and spiral arms, and to enable ways to gauge the uncertainties when decomposing galaxy subcomponents. We illustrate these new features by way of several case studies that display various levels of complexity.

1,680 citations

Journal ArticleDOI
TL;DR: The GOODS survey as mentioned in this paper is based on multiband imaging data obtained with the Hubble Space Telescope and the Advanced Camera for Surveys (ACS) and covers roughly 320 arcmin2 in the ACS F435W, F606w, F814W, and F850LP bands, divided into two well-studied fields.
Abstract: This special issue of the Astrophysical Journal Letters is dedicated to presenting initial results from the Great Observatories Origins Deep Survey (GOODS) that are primarily, but not exclusively, based on multiband imaging data obtained with the Hubble Space Telescope and the Advanced Camera for Surveys (ACS). The survey covers roughly 320 arcmin2 in the ACS F435W, F606W, F814W, and F850LP bands, divided into two well-studied fields. Existing deep observations from the Chandra X-Ray Observatory and ground-based facilities are supplemented with new, deep imaging in the optical and near-infrared from the European Southern Observatory and from the Kitt Peak National Observatory. Deep observations with the Space Infrared Telescope Facility are scheduled. Reduced data from all facilities are being released worldwide within 3-6 months of acquisition. Together, this data set provides two deep reference fields for studies of distant normal and active galaxies, supernovae, and faint stars in our own Galaxy. This Letter serves to outline the survey strategy and describe the specific data that have been used in the accompanying letters, summarizing the reduction procedures and sensitivity limits.

1,678 citations


Authors

Showing all 148365 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Albert Hofman2672530321405
Graham A. Colditz2611542256034
Michael Grätzel2481423303599
Guido Kroemer2361404246571
George Davey Smith2242540248373
Matthias Mann221887230213
Yi Chen2174342293080
Eric N. Olson206814144586
Ronald M. Evans199708166722
Hans Clevers199793169673
Raymond J. Dolan196919138540
David J. Schlegel193600193972
Simon D. M. White189795231645
George Efstathiou187637156228
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

94% related

California Institute of Technology
146.6K papers, 8.6M citations

93% related

Spanish National Research Council
220.4K papers, 7.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022371
202114,895
202016,697
201916,602
201816,160