scispace - formally typeset
Search or ask a question
Institution

Max Planck Society

NonprofitMunich, Germany
About: Max Planck Society is a nonprofit organization based out in Munich, Germany. It is known for research contribution in the topics: Galaxy & Population. The organization has 148289 authors who have published 406224 publications receiving 19522268 citations. The organization is also known as: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. & MPG.


Papers
More filters
Proceedings ArticleDOI
21 Jul 2017
TL;DR: The utility of the OctNet representation is demonstrated by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.
Abstract: We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

1,280 citations

Journal ArticleDOI
TL;DR: The structures of more than 20 proteins containing coiled-coil domains have been solved to high resolution and provided many new insights into the structure of coiled coils, their discontinuities, their relationship with other helical bundles and the problems connected with their prediction from protein sequences.

1,279 citations

Journal ArticleDOI
22 Apr 1999-Nature
TL;DR: In this paper, the authors present results from a global climate model with sufficient resolution in the tropics to adequately represent the narrow equatorial upwelling and low-frequency waves, when the model is forced by a realistic future scenario of increasing greenhouse-gas concentrations, more frequent El-Nino-like conditions and stronger cold events in the tropical Pacific Ocean.
Abstract: The El Nino/Southern Oscillation (ENSO) phenomenon is the strongest natural interannual climate fluctuation1. ENSO originates in the tropical Pacific Ocean and has large effects on the ecology of the region, but it also influences the entire global climate system and affects the societies and economies of manycountries2. ENSO can be understood as an irregular low-frequency oscillation between a warm (El Nino) and a cold (La Nina) state. The strong El Ninos of 1982/1983 and 1997/1998, along with the more frequent occurrences of El Ninos during the past few decades, raise the question of whether human-induced ‘greenhouse’ warming affects, or will affect, ENSO3. Several global climate models have been applied to transient greenhouse-gas-induced warming simulations to address this question4,6, but the results have been debated owing to the inability of the models to fully simulate ENSO (because of their coarse equatorial resolution)7. Here we present results from a global climate model with sufficient resolution in the tropics to adequately represent the narrow equatorial upwelling and low-frequency waves. When the model is forced by a realistic future scenario of increasing greenhouse-gas concentrations, more frequent El-Nino-like conditions and stronger cold events in the tropical Pacific Ocean result.

1,279 citations

Journal ArticleDOI
TL;DR: This critical review covers various aspects of recent research on discotic liquid crystals, in particular, molecular design concepts, supramolecular structure, processing into ordered thin films and fabrication of electronic devices.
Abstract: Discotic (disc-like) molecules typically comprising a rigid aromatic core and flexible peripheral chains have been attracting growing interest because of their fundamental importance as model systems for the study of charge and energy transport and due to the possibilities of their application in organic electronic devices. This critical review covers various aspects of recent research on discotic liquid crystals, in particular, molecular design concepts, supramolecular structure, processing into ordered thin films and fabrication of electronic devices. The chemical structure of the conjugated core of discotic molecules governs, to a large extent, their intramolecular electronic properties. Variation of the peripheral flexible chains and of the aromatic core is decisive for the tuning of self-assembly in solution and in bulk. Supramolecular organization of discotic molecules can be effectively controlled by the choice of the processing methods. In particular, approaches to obtain suitable macroscopic orientations of columnar superstructures on surfaces, that is, planar uniaxial or homeotropic alignment, are discussed together with appropriate processing techniques. Finally, an overview of charge transport in discotic materials and their application in optoelectronic devices is given (234 references).

1,278 citations

Journal ArticleDOI
TL;DR: A general view of the underlying self-assembly mechanisms leading to vesicles and the control of size, shape, and other vesicular properties by physicochemical means is presented in this paper.
Abstract: This Progress Report describes the latest advances in vesicles and liposomes. Recent work on the self-assembly of complex polymer systems shows that the formation of polymer vesicles or closed hull structures is archetypal, leading to fascinating new possibilities and applications in materials science. A general view of the underlying self-assembly mechanisms leading to vesicles and the control of size, shape, and other vesicular properties by physicochemical means is presented, as background. This is followed by an overview of the recently described new classes of polymer and supramolecular tectons that make vesicle formation a more general phenomenon going beyond just lipids. Finally, the potential applications of vesicles, including non-lipid vesicles, are outlined.

1,278 citations


Authors

Showing all 148365 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Albert Hofman2672530321405
Graham A. Colditz2611542256034
Michael Grätzel2481423303599
Guido Kroemer2361404246571
George Davey Smith2242540248373
Matthias Mann221887230213
Yi Chen2174342293080
Eric N. Olson206814144586
Ronald M. Evans199708166722
Hans Clevers199793169673
Raymond J. Dolan196919138540
David J. Schlegel193600193972
Simon D. M. White189795231645
George Efstathiou187637156228
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

94% related

California Institute of Technology
146.6K papers, 8.6M citations

93% related

Spanish National Research Council
220.4K papers, 7.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022371
202114,895
202016,697
201916,602
201816,160