scispace - formally typeset
Search or ask a question
Institution

Max Planck Society

NonprofitMunich, Germany
About: Max Planck Society is a nonprofit organization based out in Munich, Germany. It is known for research contribution in the topics: Galaxy & Population. The organization has 148289 authors who have published 406224 publications receiving 19522268 citations. The organization is also known as: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. & MPG.


Papers
More filters
Journal Article
TL;DR: In this article, the concept of adaptive toolboxes is used to describe a set of fast and frugal rules for decision making under uncertainty, and the strategies in the adaptive toolbox dispense with optimization and, for the most part, with calculations of probabilities and utilities.
Abstract: In a complex and uncertain world, humans and animals make decisions under the constraints of limited knowledge, resources, and time. Yet models of rational decision making in economics, cognitive science, biology, and other fields largely ignore these real constraints and instead assume agents with perfect information and unlimited time. About forty years ago, Herbert Simon challenged this view with his notion of "bounded rationality." Today, bounded rationality has become a fashionable term used for disparate views of reasoning. This book promotes bounded rationality as the key to understanding how real people make decisions. Using the concept of an "adaptive toolbox," a repertoire of fast and frugal rules for decision making under uncertainty, it attempts to impose more order and coherence on the idea of bounded rationality. The contributors view bounded rationality neither as optimization under constraints nor as the study of people's reasoning fallacies. The strategies in the adaptive toolbox dispense with optimization and, for the most part, with calculations of probabilities and utilities. The book extends the concept of bounded rationality from cognitive tools to emotions; it analyzes social norms, imitation, and other cultural tools as rational strategies; and it shows how smart heuristics can exploit the structure of environments.

2,008 citations

Journal ArticleDOI
TL;DR: In this article, the authors simulate the growth of galaxies and their central supermassive black holes by implementing a suite of semi-analytic models on the output of the Millennium Run, a very large simulation of the concordance A cold dark matter cosmogony.
Abstract: We simulate the growth of galaxies and their central supermassive black holes by implementing a suite of semi-analytic models on the output of the Millennium Run, a very large simulation of the concordance A cold dark matter cosmogony. Our procedures follow the detailed assembly history of each object and are able to track the evolution of all galaxies more massive than the Small Magellanic Cloud throughout a volume comparable to that of large modern redshift surveys. In this first paper we supplement previous treatments of the growth and activity of central black holes with a new model for 'radio' feedback from those active galactic nuclei that lie at the centre of a quasi-static X-ray-emitting atmosphere in a galaxy group or cluster. We show that for energetically and observationally plausible parameters such a model can simultaneously explain: (i) the low observed mass drop-out rate in cooling flows; (ii) the exponential cut-off at the bright end of the galaxy luminosity function; and (iii) the fact that the most massive galaxies tend to be bulge-dominated systems in clusters and to contain systematically older stars than lower mass galaxies. This success occurs because static hot atmospheres form only in the most massive structures, and radio feedback (in contrast, for example, to supernova or starburst feedback) can suppress further cooling and star formation without itself requiring star formation. We discuss possible physical models that might explain the accretion rate scalings required for our phenomenological 'radio mode' model to be successful.

1,997 citations

Journal ArticleDOI
24 Mar 1994-Nature
TL;DR: In this article, a generalized approach to the synthesis of periodic mesophases of metal oxides and cationic or anionic surfactants under a range of pH conditions is presented.
Abstract: THE recent synthesis of silica-based mesoporous materials1,2 by the cooperative assembly of periodic inorganic and surfactant-based structures has attracted great interest because it extends the range of molecular-sieve materials into the very-large-pore regime. If the synthetic approach can be generalized to transition-metal oxide mesostructures, the resulting nanocomposite materials might find applications in electrochromic or solid-electrolyte devices3,4, as high-surface-area redox catalysts5 and as substrates for biochemical separations. We have proposed recently6 that the matching of charge density at the surfactant/inorganic interfaces governs the assembly process; such co-organization of organic and inorganic phases is thought to be a key aspect of biomineralization7. Here we report a generalized approach to the synthesis of periodic mesophases of metal oxides and cationic or anionic surfactants under a range of pH conditions. We suggest that the assembly process is controlled by electrostatic complementarity between the inorganic ions in solution, the charged surfactant head groups and—when these charges both have the same sign—inorganic counterions. We identify a number of different general strategies for obtaining a variety of ordered composite materials.

1,996 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the preparation of ordered mesoporous catalysts is presented, and the essential properties of the resulting materials are described in the first part of this review.

1,994 citations

Journal ArticleDOI
TL;DR: This work developed a method that, based on the Fourier Shift Theorem, computes all possible translations between pairs of 3D images, yielding the best overlap in terms of the cross-correlation measure and subsequently finds the globally optimal configuration of the whole group of3D images.
Abstract: Motivation: Modern anatomical and developmental studies often require high-resolution imaging of large specimens in three dimensions (3D). Confocal microscopy produces high-resolution 3D images, but is limited by a relatively small field of view compared with the size of large biological specimens. Therefore, motorized stages that move the sample are used to create a tiled scan of the whole specimen. The physical coordinates provided by the microscope stage are not precise enough to allow direct reconstruction (Stitching) of the whole image from individual image stacks. Results: To optimally stitch a large collection of 3D confocal images, we developed a method that, based on the Fourier Shift Theorem, computes all possible translations between pairs of 3D images, yielding the best overlap in terms of the cross-correlation measure and subsequently finds the globally optimal configuration of the whole group of 3D images. This method avoids the propagation of errors by consecutive registration steps. Additionally, to compensate the brightness differences between tiles, we apply a smooth, non-linear intensity transition between the overlapping images. Our stitching approach is fast, works on 2D and 3D images, and for small image sets does not require prior knowledge about the tile configuration. Availability: The implementation of this method is available as an ImageJ plugin distributed as a part of the Fiji project (FijiisjustImageJ: http://pacific.mpi-cbg.de/). Contact: tomancak@mpi-cbg.de

1,989 citations


Authors

Showing all 148365 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Albert Hofman2672530321405
Graham A. Colditz2611542256034
Michael Grätzel2481423303599
Guido Kroemer2361404246571
George Davey Smith2242540248373
Matthias Mann221887230213
Yi Chen2174342293080
Eric N. Olson206814144586
Ronald M. Evans199708166722
Hans Clevers199793169673
Raymond J. Dolan196919138540
David J. Schlegel193600193972
Simon D. M. White189795231645
George Efstathiou187637156228
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

94% related

California Institute of Technology
146.6K papers, 8.6M citations

93% related

Spanish National Research Council
220.4K papers, 7.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022371
202114,895
202016,697
201916,602
201816,160