scispace - formally typeset
Search or ask a question
Institution

National Herbarium of the Netherlands

About: National Herbarium of the Netherlands is a based out in . It is known for research contribution in the topics: Genus & Biodiversity. The organization has 105 authors who have published 191 publications receiving 9313 citations. The organization is also known as: Van Royen Herbarium.


Papers
More filters
Journal ArticleDOI
TL;DR: This unprecedented wood density data set yields consistent guidelines for estimating wood densities when species-level information is lacking and should significantly reduce error in Central and South American carbon accounting programs.
Abstract: Wood density is a crucial variable in carbon accounting programs of both secondary and old-growth tropical forests. It also is the best single descriptor of wood: it correlates with numerous morphological, mechanical, physiological, and ecological properties. To explore the extent to which wood density could be estimated for rare or poorly censused taxa, and possible sources of variation in this trait, we analyzed regional, taxonomic, and phylogenetic variation in wood density among 2456 tree species from Central and South America. Wood density varied over more than one order of magnitude across species, with an overall mean of 0.645 g/cm3. Our geographical analysis showed significant decreases in wood density with increasing altitude and significant differences among low-altitude geographical regions: wet forests of Central America and western Amazonia have significantly lower mean wood density than dry forests of Central and South America, eastern and central Amazonian forests, and the Atlantic forests of Brazil; and eastern Amazonian forests have lower wood densities than the dry forests and the Atlantic forest. A nested analysis of variance showed that 74% of the species-level wood density variation was explained at the genus level, 34% at the Angiosperm Phylogeny Group (APG) family level, and 19% at the APG order level. This indicates that genus-level means give reliable approximations of values of species, except in a few hypervariable genera. We also studied which evolutionary shifts in wood density occurred in the phylogeny of seed plants using a composite phylogenetic tree. Major changes were observed at deep nodes (Eurosid 1), and also in more recent divergences (for instance in the Rhamnoids, Simaroubaceae, and Anacardiaceae). Our unprecedented wood density data set yields consistent guidelines for estimating wood densities when species-level information is lacking and should significantly reduce error in Central and South American carbon accounting programs.

722 citations

Journal ArticleDOI
28 Sep 2006-Nature
TL;DR: By using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon are shown, one paralleling a major gradient in soil fertility and the other paralleled a gradient in dry season length.
Abstract: The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.

643 citations

Journal ArticleDOI
TL;DR: Two additional lineages are potentially appropriate to be elevated to the family level in the future: the genera Lophiocarpus and Corbichonia form a well-supported clade on the basis of molecular and chemical evidence, and Limeum appears to be separated from other Molluginaceae based on both molecular and ultrastructural data.
Abstract: To study the inter- and infrafamilial phylogenetic relationships in the order Caryophyllales sensu lato (s.l.), ∼930 base pairs of the matK plastid gene have been sequenced and analyzed for 127 taxa. In addition, these sequences have been combined with the rbcL plastid gene for 53 taxa and with the rbcL and atpB plastid genes as well as the nuclear 18S rDNA for 26 taxa to provide increased support for deeper branches. The red pigments of Corbichonia, Lophiocarpus, and Sarcobatus have been tested and shown to belong to the betacyanin class of compounds. Most taxa of the order are clearly grouped into two main clades (i.e., "core" and "noncore" Caryophyllales) which are, in turn, divided into well-defined subunits. Phytolaccaceae and Molluginaceae are polyphyletic, and Portulacaceae are paraphyletic, whereas Agdestidaceae, Barbeuiaceae, Petiveriaceae, and Sarcobataceae should be given familial recognition. Two additional lineages are potentially appropriate to be elevated to the family level in the future: the genera Lophiocarpus and Corbichonia form a well-supported clade on the basis of molecular and chemical evidence, and Limeum appears to be separated from other Molluginaceae based on both molecular and ultrastructural data.

553 citations

Journal ArticleDOI
TL;DR: Combined analyses of matK and other rapidly evolving DNA regions with available multigene data sets have strong potential to enhance resolution and internal support in deep level angiosperms phylogenetics and provide additional insights into angiosperm evolution.
Abstract: Plastid matK gene sequences for 374 genera representing all angiosperm orders and 12 genera of gymnosperms were analyzed using parsimony (MP) and Bayesian inference (BI) approaches. Traditionally, slowly evolving genomic regions have been preferred for deep-level phylogenetic inference in angiosperms. The matK gene evolves approximately three times faster than the widely used plastid genes rbcL and atpB. The MP and BI trees are highly congruent. The robustness of the strict consensus tree supercedes all individual gene analyses and is comparable only to multigene-based phylogenies. Of the 385 nodes resolved, 79% are supported by high jackknife values, averaging 88%. Amborella is sister to the remaining angiosperms, followed by a grade of Nymphaeaceae and Austrobaileyales. Bayesian inference resolves Amborella + Nymphaeaceae as sister to the rest, but with weak (0.42) posterior probability. The MP analysis shows a trichotomy sister to the Austrobaileyales representing eumagnoliids, monocots + Chloranthales, and Ceratophyllum + eudicots. The matK gene produces the highest internal support yet for basal eudicots and, within core eudicots, resolves a crown group comprising Berberidopsidaceae/Aextoxicaceae, Santalales, and Caryophyllales + asterids. Moreover, matK sequences provide good resolution within many angiosperm orders. Combined analyses of matK and other rapidly evolving DNA regions with available multigene data sets have strong potential to enhance resolution and internal support in deep level angiosperm phylogenetics and provide additional insights into angiosperm evolution.

528 citations

Journal ArticleDOI
TL;DR: Although biodiversity of land-use systems showed taxonomic group- and guild-specific differences, most groups were affected in a similar way by habitat modifi- cation, and land- use systems such as secondary forests and agroforestry systems supported relatively high numbers of species and might play a significant role for biodiversity conservation in tropical landscapes.
Abstract: Tropical landscapes are dominated by land-use systems, but their contribution to the conservation of biodiversity is largely unknown. Since changes in biodiversity in response to human impact are known to differ widely among taxonomic groups and guilds, there is a need for multidisciplinary collaboration of plant, vertebrate, and invertebrate experts. We used inventories of trees, understory plants, birds (subdivided into endemics, insectivores, frugivores/nectar feeders), butterflies (endemics, fruit feeders), and dung bee- tles in Sulawesi (Indonesia) to characterize a gradient from near-primary to secondary forests, agroforestry systems, and annual crops. As expected, overall species richness tended to decrease within this gradient of increasing habitat modification, but, in contrast to pre- vious studies, we found the species richness between most taxonomic groups to be signif- icantly correlated (36 out of 38 pairwise comparisons). However, on average only 48% of the variance could be explained (within the five main groups), and only a few taxonomic groups/guilds turned out to be good predictors for others: for example, trees for fruit- and nectar-feeding birds (88% explanation) and fruit-feeding butterflies (83%), endemic birds for endemic butterflies (72%), and frugivorous/nectar-feeding birds for fruit-feeding but- terflies (67%). Although biodiversity of land-use systems showed taxonomic group- and guild-specific differences, most groups were affected in a similar way by habitat modifi- cation. Near-primary forest sites proved to be of principal importance for conservation; however, land-use systems such as secondary forests (for understory plants, birds, and butterflies) and agroforestry systems (for butterflies) supported relatively high numbers of species and might play a significant role for biodiversity conservation in tropical landscapes.

455 citations


Authors

Showing all 105 results

NameH-indexPapersCitations
Terry Sunderland5021210215
Erik Smets422146769
Hans ter Steege411099190
David J. Cantrill411345067
Freek T. Bakker36734306
Thomas L. P. Couvreur361124193
Giuseppe C. Zuccarello351733975
Henk C. den Bakker34743549
Barbara Gravendeel321293825
József Geml32825286
Tinde van Andel311274315
Hugo J. de Boer311092877
Frederic Lens311127977
Lars W. Chatrou29813914
Imogen Poole27571987
Network Information
Related Institutions (5)
Royal Botanic Gardens
6.8K papers, 257.4K citations

83% related

Swedish Museum of Natural History
4.1K papers, 165.3K citations

81% related

New York Botanical Garden
3.2K papers, 103.3K citations

78% related

Florida Museum of Natural History
2.6K papers, 95.7K citations

77% related

Natural History Museum
10.3K papers, 403K citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20212
20202
20197
20186
20177
20161