scispace - formally typeset
Search or ask a question
Institution

Naval Surface Warfare Center

FacilityWashington D.C., District of Columbia, United States
About: Naval Surface Warfare Center is a facility organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Radar & Sonar. The organization has 2855 authors who have published 3697 publications receiving 83518 citations. The organization is also known as: NSWC.


Papers
More filters
Journal ArticleDOI
TL;DR: The drop weight impact test is the simplest and easiest test that can be performed on small quantities of explosives or propellants, and yet it has only a minimal role in assessing explosive sensitivity or performance as mentioned in this paper.
Abstract: The drop weight impact test is the simplest and easiest test that can be performed on small quantities of explosives or propellants, and yet it has only a minimal role in assessing explosive sensitivity or performance. This paper examines the drop weight impact test as it is currently used, describes its major flaw, and suggests an alternative test that holds the promise of providing the impact energy required to ignite an energetic material. Other impact tests are described. One of these, the Ballistic Impact Chamber Test, measures the rate of reaction and extent of reaction during impact. This test demonstrates that during impact there are two forms of initiation reactions that occur, one that is very fast and is likely due to direct impact-shear initiation of the crystalline solids in the sample. The other, a much slower component, is thought to arise due to burning of the sample.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of an increased dislocation density, due to cold rolling, on β phase precipitation as well as the effect of misorientation on growth and kinetics was investigated.

54 citations

Journal ArticleDOI
TL;DR: The Digital Beamforming (DBF) radar system has the potential for improved time-energy management, improved signal-to-clutter (S/C) ratios, improved reliability and reduced life-cycle costs.
Abstract: Twenty-first century littoral and open-sea missions present US Navy (USN) shipboard-radar systems with the challenge of detecting small targets in severe clutter and against multiple sources of interference. In Fiscal Year 2000 (FY00), the Office of Naval Research (ONR) sponsored a program to develop an active array radar that includes a digital beamforming (DBF) architecture. The DBF radar system has the potential for improved time-energy management, improved signal-to-clutter (S/C) ratios, improved reliability and reduced life-cycle costs. This paper summarizes the latest developments of the program during FY00.

53 citations

Journal ArticleDOI
TL;DR: The electron-beam-driven self-magnetically pinched diode is a candidate for future flash X-ray radiographic sources as discussed by the authors, and it is capable of producing sub 3-mm radiation spot sizes and greater than 350 rads of hard X-rays at 1 m. The diode operates between 6 and 7 MV with a slowly decreasing impedance that falls from approximately 65 to 40 Ω during the main pulse.
Abstract: The electron-beam-driven self-magnetically pinched diode is a candidate for future flash X-ray radiographic sources. As presently fielded on Sandia Laboratories' six-cavity Radiographic Integrated Test Stand (RITS-6), the diode is capable of producing sub 3-mm radiation spot sizes and greater than 350 rads of hard X-rays at 1 m. The diode operates between 6 and 7 MV with a slowly decreasing impedance that falls from approximately 65 to 40 Ω during the main pulse. Sensitivity in diode operation is affected by the interaction of evolving plasmas from the cathode and anode, which seem to limit stable diode operation to a narrow parameter regime. To better quantify the diode physics, high-resolution time-resolved diagnostics have been utilized which include plasma spectroscopy, fast-gated imaging, X-ray p-i-n diodes, X-ray spot size, and diode and accelerator current measurements. Data from these diagnostics are also used to benchmark particle-in-cell simulations. An overview of results from experiments and simulations is presented.

53 citations


Authors

Showing all 2860 results

NameH-indexPapersCitations
James A. Yorke10144544101
Edward Ott10166944649
Sokrates T. Pantelides9480637427
J. M. D. Coey8174836364
Celso Grebogi7648822450
David N. Seidman7459523715
Mingzhou Ding6925617098
C. L. Cocke513128185
Hairong Qi503279909
Kevin J. Hemker4923110236
William L. Ditto431937991
Carey E. Priebe434048499
Clifford George412355110
Judith L. Flippen-Anderson402056110
Mortimer J. Kamlet3910812071
Network Information
Related Institutions (5)
United States Naval Research Laboratory
45.4K papers, 1.5M citations

83% related

Sandia National Laboratories
46.7K papers, 1.4M citations

82% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

80% related

Rensselaer Polytechnic Institute
39.9K papers, 1.4M citations

80% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
20227
202172
202071
201982
201884