scispace - formally typeset
Search or ask a question
Institution

Netherlands Institute for Space Research

FacilityUtrecht, Netherlands
About: Netherlands Institute for Space Research is a facility organization based out in Utrecht, Netherlands. It is known for research contribution in the topics: Galaxy & Neutron star. The organization has 737 authors who have published 3026 publications receiving 106632 citations. The organization is also known as: SRON & Space Research Organisation Netherlands.
Topics: Galaxy, Neutron star, Stars, Spectral line, Luminosity


Papers
More filters
Journal ArticleDOI
01 Dec 2016-Icarus
TL;DR: In this paper, a campaign of high-cadence observations of Io with the goal of characterizing its volcanic activity was conducted, where over 400 detections of 48 distinct hot spots, some of which were detected 30+ times.

43 citations

Journal ArticleDOI
TL;DR: The Herschel Extragalactic Legacy Project (HELP) as discussed by the authors is a collection of data from the Herschel SPIRE survey fields, including far-infrared photometry, photometric redshifts, and derived physical properties.
Abstract: We present the Herschel Extragalactic Legacy Project (HELP). This project collates, curates, homogenizes, and creates derived data products for most of the premium multiwavelength extragalactic data sets. The sky boundaries for the first data release cover 1270 deg 2 defined by the Herschel SPIRE extragalactic survey fields; notably the Herschel Multi-tiered Extragalactic Survey (HerMES) and the Herschel Atlas survey (H-ATLAS). Here, we describe the motivation and principal elements in the design of the project. Guiding principles are transparent or ‘open’ methodologies with care for reproducibility and identification of provenance. A key element of the design focuses around the homogenization of calibration, meta data, and the provision of information required to define the selection of the data for statistical analysis. We apply probabilistic methods that extract information directly from the images at long wavelengths, exploiting the prior information available at shorter wavelengths and providing full posterior distributions rather than maximum-likelihood estimates and associated uncertainties as in traditional catalogues. With this project definition paper, we provide full access to the first data release of HELP; Data Release 1 (DR1), including a monolithic map of the largest SPIRE extragalactic field at 385 deg 2 and 18 million measurements of PACS and SPIRE fluxes. We also provide tools to access and analyse the full HELP data base. This new data set includes far-infrared photometry, photometric redshifts, and derived physical properties estimated from modelling the spectral energy distributions over the full HELP sky. All the software and data presented is publicly available.

43 citations

Journal ArticleDOI
TL;DR: In this article, a detailed statistical analysis of one year (September 2003 to August 2004) of global Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) carbon monoxide (CO) total column retrievals from the Iterative Maximum Likelihood Method (IMLM) algorithm, version 6.3.
Abstract: This paper presents a detailed statistical analysis of one year (September 2003 to August 2004) of global Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) carbon monoxide (CO) total column retrievals from the Iterative Maximum Likelihood Method (IMLM) algorithm, version 6.3. SCIAMACHY provides the first solar reflectance measurements of CO and is uniquely sensitive down to the boundary layer. SCIAMACHY measurements and chemistry transport model (CTM) results are compared and jointly evaluated. Significant improvements in agreement occur, especially close to biomass burning emission regions, when the new Global Fire Emissions Database version 2 (GFEDv2) is used with the CTM. Globally, the seasonal variation of the model is very similar to that of the SCIAMACHY measurements. For certain locations, significant differences were found, which are likely related to modeling errors due to CO emission uncertainties. Statistical analysis shows that differences between single SCIAMACHY CO total column measurements and corresponding model results are primarily explained by random instrument noise errors. This strongly suggests that the random instrument noise errors are a good diagnostic for the precision of the measurements. The analysis also indicates that noise in single SCIAMACHY CO measurements is generally greater than actual variations in total columns. It is thus required to average SCIAMACHY data over larger temporal and spatial scales to obtain valuable information. Analyses of monthly averaged SCIAMACHY measurements over 3° × 2° geographical regions indicates that they are of sufficient accuracy to reveal valuable information about spatial and temporal variations in CO columns and provide an important tool for model validation. A large spatial and temporal variation in instrument noise errors exists which shows a close correspondence with the spatial distribution of surface albedo and cloud cover. This large spatial variability is important for the use of monthly and annual mean SCIAMACHY CO total column measurements. The smallest instrument noise errors of monthly mean 3° × 2° SCIAMACHY CO total columns measurements are 0.01 × 1018 molecules/cm2 for high surface albedo areas over the Sahara. Errors in SCIAMACHY CO total column retrievals due to errors other than instrument noise, like cloud cover, calibration, retrieval uncertainties and averaging kernels are estimated to be about 0.05–0.1 × 1018 molecules/cm2 in total. The bias found between model and observations is around 0.05–0.1 1018 molecules/cm2 (or about 5%) which also includes model errors. This thus provides a best estimate of the currently achievable measurement accuracy for SCIAMACHY CO monthly mean averages.

43 citations

Journal ArticleDOI
TL;DR: In this paper, Chandra observations of the bright ultraluminous X-ray (ULX) source in NGC 3921 were reported, and a Chandra position of the ULX accurate to 0.7 at 90% confidence was provided.
Abstract: We report on Chandra observations of the bright ultraluminous X-ray (ULX) source in NGC 3921. Previous XMM-Newton observations reported in the literature show the presence of a bright ULX at a 0.5–10 keV luminosity of 2 × 1040 erg s−1. Our Chandra observation finds the source at a lower luminosity of ≈8 × 1039 erg s−1; furthermore, we provide a Chandra position of the ULX accurate to 0. 7 at 90% confidence. The X-ray variability makes it unlikely that the high luminosity is caused by several separate X-ray sources. In three epochs of archival Hubble Space Telescope observations, we find a candidate counterpart to the ULX. There is direct evidence for variability between the two epochs of WFPC2 F814W observations with the observation obtained in 2000 showing a brighter source. Furthermore, converting the 1994 F336W and 2000 F300W WFPC2 and the 2010 F336W WFC3 observations to the Johnson U-band filter assuming a spectral type of O7I, we find evidence for a brightening of the U-band light in 2000. Using the higher resolution WFC3 observations, we resolve the candidate counterpart into two sources of similar color. We discuss the nature of the ULX and the probable association with the optical counterpart(s). Finally, we investigate a potential new explanation for some (bright) ULXs as the decaying stages of flares caused by the tidal disruption of a star by a recoiled supermassive black hole. However, we find that there should be at most only one of such systems within z = 0.08.

43 citations

Journal ArticleDOI
TL;DR: The results show that the use of a neural-network-based first guess leads to an increase in the number of converging retrievals, and possibly to more accurate estimates of the aerosol effective radius and complex refractive index.
Abstract: In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval. By using the outcome of the neural network as first guess in the iterative retrieval scheme, the accuracy of the retrieved fine- and coarse-mode optical thickness is further improved, while for the other parameters the improvement is small or absent. The resulting scheme (neural network + iterative retrieval) is compared to the original one (look-up table + iterative retrieval) on a set of simulated ground-based measurements, and on a small set of real observations carried out by an accurate ground-based spectropolarimeter. The results show that the use of a neural-network-based first guess leads to an increase in the number of converging retrievals, and possibly to more accurate estimates of the aerosol effective radius and complex refractive index.

42 citations


Authors

Showing all 756 results

NameH-indexPapersCitations
George Helou14466296338
Alexander G. G. M. Tielens11572251058
Gijs Nelemans10243383486
Jelle Kaastra9067728093
Christian Frankenberg7928619353
Jeroen Homan7235415499
Nanda Rea7244619881
Mariano Mendez7037214475
Jorick S. Vink7031118826
Peter G. Jonker6738428363
Michael W. Wise6427119580
George Heald6437516261
Pieter R. Roelfsema6425718759
F. F. S. van der Tak6331416781
Norbert Werner6325410741
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

92% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

91% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

90% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

90% related

Universities Space Research Association
5.4K papers, 255.6K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202324
202234
2021230
2020276
2019221
2018238