scispace - formally typeset
Search or ask a question
Institution

Netherlands Institute for Space Research

FacilityUtrecht, Netherlands
About: Netherlands Institute for Space Research is a facility organization based out in Utrecht, Netherlands. It is known for research contribution in the topics: Galaxy & Neutron star. The organization has 737 authors who have published 3026 publications receiving 106632 citations. The organization is also known as: SRON & Space Research Organisation Netherlands.
Topics: Galaxy, Neutron star, Stars, Spectral line, Luminosity


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, velocity resolved spectra of four ro-vibrational far-infrared transitions of C3 between the vibrational ground state and the low-energy ν2 bending mode at frequencies between 1654-1897 GHz using HIFI on board Herschel, in DR21(OH).
Abstract: Context. C3 is the smallest pure carbon chain detected in the dense environment of star-forming regions, although diatomic C2 is detected in diffuse clouds. Measurement of the abundance of C3 and the chemistry of its formation in dense star-forming regions has remained relatively unexplored. Aims. We aim to identify the primary C3 formation routes in dense star-forming regions following a chemical network producing species like CCH and c-C3H2 in the star-forming cores associated with DR21(OH), a high-mass star-forming region. Methods. We observed velocity resolved spectra of four ro-vibrational far-infrared transitions of C3 between the vibrational ground state and the low-energy ν2 bending mode at frequencies between 1654–1897 GHz using HIFI on board Herschel, in DR21(OH). Several transitions of CCH and c-C3H2 were also observed with HIFI and the IRAM 30 m telescope. Rotational temperatures and column densities for all chemical species were estimated. A gas and grain warm-up model was used to obtain estimates of densities and temperatures of the envelope. The chemical network in the model was used to identify the primary C3 forming reactions in DR21(OH). Results. We detected C3 in absorption in four far-infrared transitions, P(4), P(10), Q(2), and Q(4). The continuum sources MM1 and MM2 in DR21(OH), though spatially unresolved, are sufficiently separated in velocity to be identified in the C3 spectra. All C3 transitions are detected from the embedded source MM2 and the surrounding envelope, whereas only Q(4) and P(4) are detected toward the hot core MM1. The abundance of C3 in the envelope and MM2 is ∼6 × 10 −10 and ∼3 × 10 −9 , respectively. For CCH and c-C3H2, we only detect emission from the envelope and MM1. The observed CCH, C3 and c-C3H2 abundances are most consistent with a chemical model with nH2 ∼ 5 × 10 6 cm −3 , a post-warm-up dust temperature Tmax = 30 K, and a time of ∼ 0.7–3 Myr. Conclusions. Post-warm-up gas phase chemistry of CH4 released from the grain at t ∼ 0.2 Myr and lasting for 1 Myr can explain the observed C3 abundance in the envelope of DR21(OH), and no mechanism involving photodestruction of PAH molecules is required. The chemistry in the envelope is similar to the warm carbon chain chemistry found in lukewarm corinos. We interpret the observed lower C3 abundance in MM1 as compared to MM2 and the envelope to be due to the destruction of C3 in the more evolved MM1. The timescale for the chemistry derived for the envelope is consistent with the dynamical timescale of 2 Myr derived for DR21(OH) in other studies.

44 citations

Journal ArticleDOI
TL;DR: In this article, a dendrogram and line fitting analysis was performed on the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy) with an angular resolution of 7 arcsecs.
Abstract: We present observations of N2H+(1-0), HCO+(1-0), and HCN(1-0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 square arcminutes of Serpens Main with an angular resolution of 7 arcsecs. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N2H+(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of 0.2 pc and widths of 0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

44 citations

Journal ArticleDOI
TL;DR: In this article, a three-dimensional Monte Carlo radiative transfer code (ARTES) was developed for scattered light simulations in (exo)planetary atmospheres, applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material.
Abstract: Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments.Aims. We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions.Methods. We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure.Results. The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron-sized cloud particles as a result of forward scattering. The presence of a cold or hot circumplanetary disk may also produce a detectable degree of polarization (≲1%) even with a uniform cloud layer in the atmosphere.

44 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical formula is developed to accurately represent the photoabsorption cross section of O I for all energies of interest in X-ray spectral modeling, and minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances.
Abstract: An analytical formula is developed to accurately represent the photoabsorption cross section of O I for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

44 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed data from three-pointed Suzaku observations of the merging cluster of galaxies CIZA J2242.8+5301 to derive the temperature distribution in four different directions.
Abstract: Content: We present the results from $Suzaku$ observations of the merging cluster of galaxies CIZA J2242.8+5301 at $z$=0.192. Aims. To study the physics of gas heating and particle acceleration in cluster mergers, we investigated the X-ray emission from CIZA J2242.8+5301, which hosts two giant radio relics in the northern/southern part of the cluster. Methods. We analyzed data from three-pointed Suzaku observations of CIZA J2242.8+5301 to derive the temperature distribution in four different directions. Results: The Intra-Cluster Medium (ICM) temperature shows a remarkable drop from 8.5$_{-0.6}^{+0.8}$ keV to 2.7$_{-0.4}^{+0.7}$ keV across the northern radio relic. The temperature drop is consistent with a Mach number ${\cal M}_n=2.7^{+0.7}_{-0.4}$ and a shock velocity $v_{shock:n}=2300_{-400}^{+700}\rm\,km\,s^{-1}$. We also confirm the temperature drop across the southern radio relic. However, the ICM temperature beyond this relic is much higher than beyond the northern one, which gives a Mach number ${\cal M}_s=1.7^{+0.4}_{-0.3}$ and shock velocity $v_{shock:s}=2040_{-410}^{+550}\rm \,km\,s^{-1}$. These results agree with other systems showing a relationship between the radio relics and shock fronts which are induced by merging activity. We compare the X-ray derived Mach numbers with the radio derived Mach numbers from the radio spectral index under the assumption of diffusive shock acceleration in the linear test particle regime. For the northern radio relic, the Mach numbers derived from X-ray and radio observations agree with each other. Based on the shock velocities, we estimate that CIZA J2242.8+5301 is observed approximately 0.6 Gyr after core passage. The magnetic field pressure at the northern relic is estimated to be 9% of the thermal pressure.

44 citations


Authors

Showing all 756 results

NameH-indexPapersCitations
George Helou14466296338
Alexander G. G. M. Tielens11572251058
Gijs Nelemans10243383486
Jelle Kaastra9067728093
Christian Frankenberg7928619353
Jeroen Homan7235415499
Nanda Rea7244619881
Mariano Mendez7037214475
Jorick S. Vink7031118826
Peter G. Jonker6738428363
Michael W. Wise6427119580
George Heald6437516261
Pieter R. Roelfsema6425718759
F. F. S. van der Tak6331416781
Norbert Werner6325410741
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

92% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

91% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

90% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

90% related

Universities Space Research Association
5.4K papers, 255.6K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202324
202234
2021230
2020276
2019221
2018238