scispace - formally typeset
Search or ask a question
Institution

Netherlands Institute for Space Research

FacilityUtrecht, Netherlands
About: Netherlands Institute for Space Research is a facility organization based out in Utrecht, Netherlands. It is known for research contribution in the topics: Galaxy & Neutron star. The organization has 737 authors who have published 3026 publications receiving 106632 citations. The organization is also known as: SRON & Space Research Organisation Netherlands.
Topics: Galaxy, Neutron star, Stars, Spectral line, Luminosity


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an X-ray spectral analysis of the nearby double radio relic merging cluster Abell 3376 (z = 0.046), observed with the Suzaku XIS instrument, is presented.
Abstract: We present an X-ray spectral analysis of the nearby double radio relic merging cluster Abell 3376 (z = 0.046), observed with the Suzaku XIS instrument. These deep (∼360 ks) observations cover the entire double relic region in the outskirts of the cluster. These diffuse radio structures are amongst the largest and arc-shaped relics observed in combination with large-scale X-ray shocks in a merging cluster. We confirm the presence of a stronger shock (ℳW = 2.8 ± 0.4) in the western direction at r ∼ 26′, derived from a temperature and surface brightness discontinuity across the radio relic. In the east, we detect a weaker shock (ℳE = 1.5 ± 0.1) at r ∼ 8′, possibly associated with the “notch” of the eastern relic, and a cold front at r ∼ 3′. Based on the shock speed calculated from the Mach numbers, we estimate that the dynamical age of the shock front is ∼0.6 Gyr after core passage, indicating that Abell 3376 is still an evolving merging cluster and that the merger is taking place close to the plane of the sky. These results are consistent with simulations and optical and weak lensing studies from the literature.

33 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study of the FeK emission/absorption complex in the nearby, bright Seyfert 1 galaxy Mrk-509 is presented, where the authors combine the results of time-resolved spectral analysis on both short and long time-scales including model-independent rms spectra.
Abstract: Context. We report on a detailed study of the Fe K emission/absorption complex in the nearby, bright Seyfert 1 galaxy Mrk 509. The study is part of an extensive XMM-Newton monitoring consisting of 10 pointings (~60 ks each) about once every 4 days, and includes a reanalysis of previous XMM-Newton and Chandra observations.Aims. We aim at understanding the origin and location of the Fe K emission and absorption regions.Methods. We combine the results of time-resolved spectral analysis on both short and long time-scales including model-independent rms spectra.Results. Mrk 509 shows a clear (EW = 58 ± 4 eV) neutral Fe Kα emission line that can be decomposed into a narrow (σ = 0.027 keV) component (found in the Chandra HETG data) plus a resolved (σ = 0.22 keV) component. We find the first successful measurement of a linear correlation between the intensity of the resolved line component and the 3–10 keV flux variations on time scales of years down to a few days. The Fe Kα reverberates the hard X-ray continuum without any measurable lag, suggesting that the region producing the resolved Fe Kα component is located within a few light days to a week (r ≲ 103 r g ) from the black hole (BH). The lack of a redshifted wing in the line poses a lower limit of ≥40 r g for its distance from the BH. The Fe Kα could thus be emitted from the inner regions of the BLR, i.e. within the ~80 light days indicated by the Hβ line measurements. In addition to these two neutral Fe Kα components, we confirm the detection of weak (EW ~ 8–20 eV) ionised Fe K emission. This ionised line can be modelled with either a blend of two narrow Fe xxv and Fe xxvi emission lines (possibly produced by scattering from distant material) or with a single relativistic line produced, in an ionised disc, down to a few r g from the BH. In the latter interpretation, the presence of an ionised standard α -disc, down to a few r g , is consistent with the source high Eddington ratio. Finally, we observe a weakening/disappearing of the medium- and high-velocity high-ionisation Fe K wind features found in previous XMM-Newton observations. Conclusions. This campaign has made the first reverberation measurement of the resolved component of the Fe Kα line possible, from which we can infer a location for the bulk of its emission at a distance of r ~ 40–1000 r g from the BH.

33 citations

Journal ArticleDOI
TL;DR: A four-layer dichotomous tree is designed to classify the radio AGNs, which leads to a significantly better performance than the direct six-type classification and could confirm with a sufficiently large sample that there could not exist an abrupt separation between FRIs and FRIIs as reported in some previous works.
Abstract: We present a morphological classification of 14,245 radio active galactic nuclei (AGNs) into six types, i.e., typical Fanaroff–Riley Class I/II (FRI/II), FRI/II-like bent-tailed, X-shaped radio galaxy, and ringlike radio galaxy, by designing a convolutional neural network based autoencoder, namely MCRGNet, and applying it to a labeled radio galaxy (LRG) sample containing 1442 AGNs and an unlabeled radio galaxy (unLRG) sample containing 14,245 unlabeled AGNs selected from the Best–Heckman sample. We train MCRGNet and implement the classification task by a three-step strategy, i.e., pre-training, fine-tuning, and classification, which combines both unsupervised and supervised learnings. A four-layer dichotomous tree is designed to classify the radio AGNs, which leads to a significantly better performance than the direct six-type classification. On the LRG sample, our MCRGNet achieves a total precision of ~93% and an averaged sensitivity of ~87%, which are better than those obtained in previous works. On the unLRG sample, whose labels have been human-inspected, the neural network achieves a total precision of ~80%. Also, using Sloan Digital Sky Survey Data Release 7 to calculate the r-band absolute magnitude (M opt) and using the flux densities to calculate the radio luminosity (L radio), we find that the distributions of the unLRG sources on the L radio–M opt plane do not show an apparent redshift evolution and could confirm with a sufficiently large sample that there could not exist an abrupt separation between FRIs and FRIIs as reported in some previous works.

33 citations

Journal ArticleDOI
TL;DR: In this article, the authors employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean.
Abstract: Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is −4.6 +/- 1.5 W/sq m for cloud-free and −2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

33 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the multichannel Landau-Zener theory and a cascade model for X-ray emission to generate cross sections and Xray line ratios for a variety of bare and non-bare ion single electron capture (SEC) collisions.
Abstract: Charge exchange (CX) has emerged in X-ray emission modeling as a significant process that must be considered in many astrophysical environment--particularly comets. Comets host an interaction between solar wind ions and cometary neutrals to promote solar wind charge exchange (SWCX). X-ray observatories provide astronomers and astrophysicists with data for many X-ray emitting comets that are impossible to accurately model without reliable CX data. Here, we utilize a streamlined set of computer programs that incorporate the multi-channel Landau-Zener theory and a cascade model for X-ray emission to generate cross sections and X-ray line ratios for a variety of bare and non-bare ion single electron capture (SEC) collisions. Namely, we consider collisions between the solar wind constituent bare and H-like ions of C, N, O, Ne, Na, Mg, Al, and Si and the cometary neutrals H2O, CO, CO2, OH, and O. To exemplify the application of this data, we model the X-ray emission of Comet C/2000 WM1 (linear) using the CX package in SPEX and find excellent agreement with observations made with the XMM-Newton RGS detector. Our analyses show that the X-ray intensity is dominated by SWCX with H, while H2O plays a secondary role. This is the first time, to our knowledge, that CX cross sections have been implemented into a X-ray spectral fitting package to determine the H to H2O ratio in cometary atmospheres. The CX data sets are incorporated into the modeling packages SPEX and Kronos.

33 citations


Authors

Showing all 756 results

NameH-indexPapersCitations
George Helou14466296338
Alexander G. G. M. Tielens11572251058
Gijs Nelemans10243383486
Jelle Kaastra9067728093
Christian Frankenberg7928619353
Jeroen Homan7235415499
Nanda Rea7244619881
Mariano Mendez7037214475
Jorick S. Vink7031118826
Peter G. Jonker6738428363
Michael W. Wise6427119580
George Heald6437516261
Pieter R. Roelfsema6425718759
F. F. S. van der Tak6331416781
Norbert Werner6325410741
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

92% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

91% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

90% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

90% related

Universities Space Research Association
5.4K papers, 255.6K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202324
202234
2021230
2020276
2019221
2018238