scispace - formally typeset
Search or ask a question
Institution

Southwest University of Science and Technology

EducationMianyang, China
About: Southwest University of Science and Technology is a education organization based out in Mianyang, China. It is known for research contribution in the topics: Adsorption & Graphene. The organization has 10017 authors who have published 8923 publications receiving 94850 citations. The organization is also known as: Xīnán Kējìdàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: The mean and mean-square behaviors of the M-estimate based normalized subband adaptive filter algorithm (M-NSAF) with robustness against impulsive noise are studied and the stability condition, transient and steady-state results of the algorithm are formulated analytically.
Abstract: This article studies the mean and mean-square behaviors of the M-estimate based normalized subband adaptive filter algorithm (M-NSAF) with robustness against impulsive noise. Based on the contaminated-Gaussian noise model, the stability condition, transient and steady-state results of the algorithm are formulated analytically. These analysis results help us to better understand the M-NSAF performance in impulsive noise. To further obtain fast convergence and low steady-state estimation error, we derive a variable step size (VSS) M-NSAF algorithm. This VSS scheme is also generalized to the proportionate M-NSAF variant for sparse systems. Computer simulations on the system identification in impulsive noise and the acoustic echo cancellation with double-talk are performed to demonstrate our theoretical analysis and the effectiveness of the proposed algorithms.

47 citations

Journal ArticleDOI
TL;DR: In this article, the performance of lithium sulfur (Li/S) battery was greatly improved by the employment of nitrogen doped carbon nanotubes (N-CNTs) based cathode.

47 citations

Journal ArticleDOI
TL;DR: The results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi- scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites.
Abstract: In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, ie, temperature and CNT content, were investigated extensively For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C) It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc

47 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of amorphous NiP on hydrogen generation of strontium titanate (SrTiO 3, STO) under ultraviolet (UV) light irradiation was studied.

47 citations

Journal ArticleDOI
TL;DR: The scientometric analysis method is adopted to assess the current state and explore the trends of phytoremediation research based on the bibliographic records retrieved from the Web of Science Core Collection (WoSCC).
Abstract: As a cost-effective, environmentally friendly remediation technology, phytoremediation is defined as the use of green plants to remove pollutants from the environment or render them harmless and has been applied to a variety of contaminated sites throughout the world. There is a prominent phenomenon in which publications about phytoremediation increase each year and involve an increasing number of subject categories. This paper adopts the scientometric analysis method to assess the current state and explore the trends of phytoremediation research based on the bibliographic records retrieved from the Web of Science Core Collection (WoSCC). The results of this paper clearly answer the following questions. (1) What are the publishing characteristics of research on the topic of phytoremediation? What are the characteristics of academic collaboration in phytoremediation research? (2) What are the characteristics and development trends of phytoremediation research? (3) What are the hotspots and frontiers of phytoremediation research? Overall, the research method provides a new approach for the assessment of the performance of phytoremediation research. These results may help new researchers quickly integrate into the field of phytoremediation, as they can easily grasp the frontiers of phytoremediation research and obtain more valuable scientific information. This study also provides references for the follow-up research of relevant researchers.

47 citations


Authors

Showing all 10090 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yi Yang143245692268
Jian Zhou128300791402
Wei Zhang104291164923
Lei Wang95148644636
Ray L. Frost86135641053
Tao Chen8682027714
Yong Zhou8468829569
Yuan Hu8374727774
Xuemei Chen7628124252
Xiangxue Wang6714513052
Zhong-Ming Li6648917514
Ke Li6265415407
Hui Zhang5871714386
Ning Hu5759314125
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

90% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Chongqing University
57.8K papers, 784.6K citations

90% related

Tianjin University
79.9K papers, 1.2M citations

89% related

University of Science and Technology Beijing
44.4K papers, 623.2K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202343
2022153
20211,251
20201,132
20191,033
2018740