scispace - formally typeset
Search or ask a question

Showing papers in "American Mineralogist in 2021"









Journal ArticleDOI
TL;DR: In this article, the competitive adsorption geometries for arsenate and phosphate on magnetite surfaces over a pH range of 4-9 were investigated using in situ attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and two-dimensional correlation analysis (2D-COS).
Abstract: In the present study, the competitive adsorption geometries for arsenate and phosphate on magnetite surfaces over a pH range of 4–9 were investigated using in situ attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and two-dimensional correlation analysis (2D-COS). The adsorption energies and infrared vibrational frequencies of these surface complexes were also calculated by first-principles simulations. Arsenate and phosphate have different preferences for the magnetite surface in the presence of aqueous solvent at both acid and alkaline pH. For the adsorption of phosphate, mono-protonated monodentate mononuclear (MMM) complexes dominated at acid pH, while non-protonated bidentate binuclear (NBB) complexes were dominant at alkaline pH. Arsenate mainly formed bidentate binuclear (BB) complexes with some outer-sphere species, both of which were more prevalent at acid pH. The pre-absorbed inner-sphere arsenate species were scarcely affected by the introduction of phosphate. However, the pre-absorbed phosphate oxyanions, especially the MMM complexes, were significantly substituted by BB arsenate at the magnetite surfaces. The adsorption affinity of phosphate and arsenate species for magnetite surface was found to increase in the following order: MMM phosphate complex < NBB phosphate complex < BB arsenate complex, which was consistent with the calculated adsorption energies. The simulated infrared vibrational frequencies for the most favorable adsorption modes of each oxyanion display distinctive patterns, and their trends are in excellent agreement with experimental data. The effects of pH, adsorption sequence, and mineral species on the competitive adsorption between arsenate and phosphate oxyanions are also discussed, and their different competing ability and stability on the magnetite surfaces can be ascribed to the variations in adsorption geometry and strength of binding. To the best of our knowledge, this is the first study aiming to distinguish the stability of the different phosphate and arsenate complexes on magnetite by employing a combined approach of in situ spectroscopy and DFT simulations. Our results provide molecular-level insight into the geometries and relative stabilities of the adsorption of phosphate and arsenate on magnetite surfaces, which is useful for interpretation of the mobility and bioavailability of these anions.

18 citations


Journal ArticleDOI
TL;DR: In this article, a series of synthetic Ca-birnessite analogs prepared by cation exchange with synthetic Na-bircnessite at pH values from 2 to 7.5 were characterized using powder X-ray diffraction and Rietveld refinement, Fourier transform infrared spectroscopy, Raman spectrograph, X-Ray photoelectron spectroscopic, and scanning and transmission electron microscopy.
Abstract: Abstract Birnessite-like minerals are among the most common Mn oxides in surficial soils and sediments, and they mediate important environmental processes (e.g., biogeochemical cycles, heavy metal confinement) and have novel technological applications (e.g., water oxidation catalysis). Ca is the dominant interlayer cation in both biotic and abiotic birnessites, especially when they form in association with carbonates. The current study investigated the structures of a series of synthetic Ca-birnessite analogs prepared by cation-exchange with synthetic Na-birnessite at pH values from 2 to 7.5. The resulting Ca-exchanged birnessite phases were characterized using powder X‑ray diffraction and Rietveld refinement, Fourier transform infrared spectroscopy, Raman spectroscopy, X‑ray photoelectron spectroscopy, and scanning and transmission electron microscopy. All samples synthesized at pH values greater than 3 exhibited a similar triclinic structure with nearly identical unit-cell parameters. The samples exchanged at pH 2 and 3 yielded hexagonal structures, or mixtures of hexagonal and triclinic phases. Rietveld structure refinement and X‑ray photoelectron spectroscopy showed that exchange of Na by Ca triggered reduction of some Mn3+, generating interlayer Mn2+ and vacancies in the octahedral layers. The triclinic and hexagonal Ca-birnessite structures described in this study were distinct from Na- and H-birnessite, respectively. Therefore, modeling X‑ray absorption spectra of natural Ca-rich birnessites through mixing of Na- and H-birnessite end-members will not yield an accurate representation of the true structure.

18 citations








Journal ArticleDOI
TL;DR: In this article, the formation of 43 primary crystalline and amorphous phases in chondrules, which are diverse igneous droplets that formed in environments with high dust/gas ratios during an interval of planetesimal accretion and differentiation between 4566 and 4561 Ma.
Abstract: Information-rich attributes of minerals reveal their physical, chemical, and biological modes of origin in the context of planetary evolution, and thus they provide the basis for an evolutionary system of mineralogy. Part III of this system considers the formation of 43 different primary crystalline and amorphous phases in chondrules, which are diverse igneous droplets that formed in environments with high dust/gas ratios during an interval of planetesimal accretion and differentiation between 4566 and 4561 Ma. Chondrule mineralogy is complex, with several generations of initial droplet formation via various proposed heating mechanisms, followed in many instances by multiple episodes of reheating and partial melting. Primary chondrule mineralogy thus reflects a dynamic stage of mineral evolution, when the diversity and distribution of natural condensed solids expanded significantly.







Journal ArticleDOI
TL;DR: In this article, the authors investigated the formation of high-silica rhyolites (HSRs) by investigating an integrated data set of whole-rock geochemistry, geochronology, and mineral composition of the ~74 Ma Nuocang HSR (SiO2 = 74.5-79.3 wt%) from the Coqen region in southern Tibet.
Abstract: Abstract Understanding the formation of high-silica rhyolites (HSRs, SiO2 > 75 wt%) is critical to revealing the evolution of felsic magma systems and magma chamber processes. This paper addresses HSR petrogenesis by investigating an integrated data set of whole-rock geochemistry, geochronology, and mineral composition of the ~74 Ma Nuocang HSR (SiO2 = 74.5–79.3 wt%) from the Coqen region in southern Tibet. Cathodoluminescence (CL) images show that zircons from the Nuocang HSRs can be divided into two textural types: (1) those with dark-CL cores displaying resorption features and overgrown by light-CL rims, and (2) those comprising a single light-CL zone, without dark-CL cores. In situ single-spot data and scanning images demonstrate that these two types of zircon have similar U-Pb ages (~74 Ma) and Hf isotopic compositions [εHf(t) = –9.09 to –5.39], indicating they were generated by the same magmatic system. However, they have different abundances of trace elements and trace element ratios. The dark-CL cores are likely crystallized from a highly evolved magma as indicated by their higher U, Th, Hf, Y, and heavy rare earth elements concentrations, lower Sm/Yb ratio, and more negative Eu anomalies. In contrast, the uniformly light-CL zircons and the light-CL rims are likely crystallized from less evolved and hotter magma, as indicated by their lower U-Th-REE abundances and higher Ti-in-zircon temperatures. This is consistent with the Ti-in-quartz geother-mometer in quartz phenocrysts that reveals that the light-CL zones are hotter than dark-CL cores. We propose that the composition and temperature differences between cores and rims of zircons and quartz record a recharge and reheating event during the formation of the Nuocang HSRs. This implies that HSR is a result of mixing between a hotter, less evolved silicic magma and a cooler, highly evolved, and crystal-rich mush. This study shows that zircon and quartz with distinct internal textures can be combined to disentangle the multi-stage evolution of magma reservoirs, providing critical insights into the origin of HSRs.





Journal ArticleDOI
TL;DR: In this paper, the authors presented the first 3D focused ion beam/scanning electron microscopy (FIB/SEM) tomography of the distribution of gold nanoparticles in nanopores in low-Si magnetite.
Abstract: Abstract Recent studies have identified gold nanoparticles in ores in a range of deposit types, but little is known about their formation processes. In this contribution, gold-bearing magnetite from the well-documented, world-class Beiya Au deposit, China, was investigated in terms of microstructure and crystallography at the nanoscale. We present the first three-dimensional (3D) focused ion beam/scanning electron microscopy (FIB/SEM) tomography of the distribution of gold nanoparticles in nanopores in the low-Si magnetite. The porous low-Si magnetite, which overprints an earlier generation of silician magnetite, was formed by a coupled dissolution-reprecipitation reaction (CDRR). The extrinsic changes in thermodynamic conditions (e.g., S content and temperature) of the hydrothermal fluids resulted in the CDRR in magnetite and the disequilibrium of Au-Bi melts. The gold nanoparticles crystallized from Au-supersaturated fluids originating from the disequilibrium of Au-Bi melts and grew in two ways depending on the intrinsic crystal structure and pore textures: (1) heteroepitaxial growth utilizing the (111) lattice planes of magnetite, and (2) randomly oriented nucleation and growth. Therefore, this study unravels how intrinsic and extrinsic factors drove the formation of gold nanoparticles at fluid-mineral interfaces.


Journal ArticleDOI
TL;DR: In this paper, the authors show that allabogdanite is metastable at ambient pressure and that it irreversibly transforms into its low-pressure polymorph, barringerite, upon heating to 850 ± 50 °C.
Abstract: Abstract Minerals formed at high pressures are sensitive indicators of extreme pressure-temperature conditions that occur in nature. The discovery of the high-pressure polymorph of (Fe,Ni)2P, allabogdanite in the surficial pyrometamorphic rocks of the Hatrurim Formation (the Mottled Zone) surrounding the Dead Sea basin in Israel is the first terrestrial occurrence of a mineral previously only found in iron meteorites. Stepwise annealing experiments demonstrate that allabogdanite is metastable at ambient pressure and that it irreversibly transforms into its low-pressure polymorph, barringerite, upon heating to 850 ± 50 °C. High-pressure, high-temperature diamond-anvil cell (DAC) experiments confirm the results of annealing experiments. The DAC data indicate that Hatrurim allabogdanite is metastable below 7.4 GPa, and the low- to high-pressure phase transition (barringerite → allabogdanite) occurs at 25 ± 3 GPa and 1400 ± 100 °C. The observed transition pressure of Hatrurim allabogdanite is significantly higher than that of pure synthetic Fe2P (8 GPa) due to partial substitution of Fe for Ni (4 wt%) and Mo (2.5 wt%). Because the influence of substituting impurities on the conditions of phase transitions can be unexpectedly strong, our findings confirm that caution should be exercised when extrapolating data from experiments on synthetic compounds to natural systems. Based on the discovery of terrestrial allabogdanite (Fe,Ni)2P coupled with experiments probing the phase transitions in this natural composition, we contend that terrestrial allabogdanite formed via transformation from barringerite and posit potential scenarios of its formation.