scispace - formally typeset
Search or ask a question

Showing papers in "Annual Review of Nutrition in 2017"


Journal ArticleDOI
TL;DR: If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.
Abstract: The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms “intermittent fasting,” “fasting,” “time-restricted feeding,” and “food timing.” Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health ...

447 citations


Journal ArticleDOI
TL;DR: The ketone body β-hydroxybutyrate represents an essential carrier of energy from the liver to peripheral tissues when the supply of glucose is too low for the body's energetic needs, such as during periods of prolonged exercise, starvation, or absence of dietary carbohydrates.
Abstract: Various mechanisms in the mammalian body provide resilience against food deprivation and dietary stress. The ketone body β-hydroxybutyrate (BHB) is synthesized in the liver from fatty acids and represents an essential carrier of energy from the liver to peripheral tissues when the supply of glucose is too low for the body's energetic needs, such as during periods of prolonged exercise, starvation, or absence of dietary carbohydrates. In addition to its activity as an energetic metabolite, BHB is increasingly understood to have cellular signaling functions. These signaling functions of BHB broadly link the outside environment to epigenetic gene regulation and cellular function, and their actions may be relevant to a variety of human diseases as well as human aging.

388 citations


Journal ArticleDOI
TL;DR: Findings indicate that coffee can be part of a healthful diet and associated with a probable decreased risk of Parkinson's disease and type-2 diabetes and an increased risk of pregnancy loss.
Abstract: To evaluate the associations between coffee and caffeine consumption and various health outcomes, we performed an umbrella review of the evidence from meta-analyses of observational studies and randomized controlled trials (RCTs). Of the 59 unique outcomes examined in the selected 112 meta-analyses of observational studies, coffee was associated with a probable decreased risk of breast, colorectal, colon, endometrial, and prostate cancers; cardiovascular disease and mortality; Parkinson's disease; and type-2 diabetes. Of the 14 unique outcomes examined in the 20 selected meta-analyses of observational studies, caffeine was associated with a probable decreased risk of Parkinson's disease and type-2 diabetes and an increased risk of pregnancy loss. Of the 12 unique acute outcomes examined in the selected 9 meta-analyses of RCTs, coffee was associated with a rise in serum lipids, but this result was affected by significant heterogeneity, and caffeine was associated with a rise in blood pressure. Given the spectrum of conditions studied and the robustness of many of the results, these findings indicate that coffee can be part of a healthful diet.

306 citations


Journal ArticleDOI
TL;DR: The current understanding of the properties and physiological functions of TMAO, its dietary sources, and its effects on human metabolism is reviewed.
Abstract: Trimethylamine N-oxide (TMAO) is a biologically active molecule and is a putative promoter of chronic diseases including atherosclerosis in humans. Host intestinal bacteria produce its precursor trimethylamine (TMA) from carnitine, choline, or choline-containing compounds. Most of the TMA produced is passively absorbed into portal circulation, and hepatic flavin-dependent monooxygenases (FMOs) efficiently oxidize TMA to TMAO. Both observational and experimental studies suggest a strong positive correlation between increased plasma TMAO concentrations and adverse cardiovascular events, such as myocardial infarction, stroke, and death. However, a clear mechanistic link between TMAO and such diseases is not yet validated. Therefore, it is debated whether increased TMAO concentrations are the cause or result of these diseases. Here, we have tried to review the current understanding of the properties and physiological functions of TMAO, its dietary sources, and its effects on human metabolism. Studies that describe the potential role of TMAO in the etiology of cardiovascular and other diseases are also discussed.

280 citations


Journal ArticleDOI
TL;DR: Recent advances in understanding the interaction between Lcn2 and iron are summarized, whereas both beneficial and detrimental functions have been documented in neurodegenerative diseases, metabolic syndrome, renal disorders, skin disorders, and cancer.
Abstract: Lipocalin 2 (Lcn2), an innate immune protein, has emerged as a critical iron regulatory protein during physiological and inflammatory conditions. As a bacteriostatic factor, Lcn2 obstructs the siderophore iron-acquiring strategy of bacteria and thus inhibits bacterial growth. As part of host nutritional immunity, Lcn2 facilitates systemic, cellular, and mucosal hypoferremia during inflammation, in addition to stabilizing the siderophore-bound labile iron pool. In this review, we summarize recent advances in understanding the interaction between Lcn2 and iron, and its effects in various inflammatory diseases. Lcn2 exerts mostly a protective role in infectious and inflammatory bowel diseases, whereas both beneficial and detrimental functions have been documented in neurodegenerative diseases, metabolic syndrome, renal disorders, skin disorders, and cancer. Further animal and clinical studies are necessary to unveil the multifaceted roles of Lcn2 in iron dysregulation during inflammation and to explore its therapeutic potential for treating inflammatory diseases.

210 citations


Journal ArticleDOI
TL;DR: The mechanisms by which gonadal hormones and sex chromosome complement each contribute to lipid metabolism and associated diseases, and the current approaches that are used to study them are reviewed.
Abstract: Men and women exhibit significant differences in obesity, cardiovascular disease, and diabetes. To provide better diagnosis and treatment for both sexes, it is important to identify factors that underlie the observed sex differences. Traditionally, sex differences have been attributed to the differential effects of male and female gonadal secretions (commonly referred to as sex hormones), which substantially influence many aspects of metabolism and related diseases. Less appreciated as a contributor to sex differences are the fundamental genetic differences between males and females, which are ultimately determined by the presence of an XX or XY sex chromosome complement. Here, we review the mechanisms by which gonadal hormones and sex chromosome complement each contribute to lipid metabolism and associated diseases, and the current approaches that are used to study them. We focus particularly on genetic approaches including genome-wide association studies in humans and mice, -omics and systems genetics approaches, and unique experimental mouse models that allow distinction between gonadal and sex chromosome effects.

177 citations


Journal ArticleDOI
TL;DR: Both n-6 and n-3 polyunsaturated fatty acids are associated with lower CVD risk, although the effects of fish oil supplementation remains inconsistent.
Abstract: Health effects of dietary fats have been extensively studied for decades. However, controversies exist on the effects of various types of fatty acids, especially saturated fatty acid (SFA), on cardiovascular disease (CVD). Current evidence supports that different types of dietary fatty acids have divergent effects on CVD risk, and the effects also depend strongly on the comparison or replacement macronutrient. A significant reduction in CVD risk can be achieved if SFAs are replaced by unsaturated fats, especially polyunsaturated fatty acids. Intake of industrially produced trans fat is consistently associated with higher CVD risk. Both n-6 and n-3 polyunsaturated fatty acids are associated with lower CVD risk, although the effects of fish oil supplementation remains inconsistent. The 2015-2020 Dietary Guidelines for Americans place greater emphasis on types of dietary fat than total amount of dietary fat and recommend replacing SFAs with unsaturated fats, especially polyunsaturated fatty acids for CVD prevention.

161 citations


Journal ArticleDOI
TL;DR: This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body and explores some perspectives for the future.
Abstract: Worldwide obesity rates have reached epidemic proportions and significantly contribute to the growing prevalence of metabolic diseases. Chronic low-grade inflammation, a hallmark of obesity, involves immune cell infiltration into expanding adipose tissue. In turn, obesity-associated inflammation can lead to complications in other metabolic tissues (e.g., liver, skeletal muscle, pancreas) through lipotoxicity and inflammatory signaling networks. Importantly, although numerous signaling pathways are known to integrate metabolic and inflammatory processes, the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is now noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome can be influenced by various metabolites, including fatty acids. Specifically, although saturated fatty acids may promote NLRP3 inflammasome activation, monounsaturated fatty acids and polyunsaturated fatty acids have recently been shown to impede NLRP3 activity. Therefore, the NLRP3 inflammasome and associated metabolic inflammation have key roles in the relationships among fatty acids, metabolites, and metabolic disease. This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body. In addition, we explore some perspectives for the future, wherein recent work in the immunology field clearly demonstrates that metabolic reprogramming defines immune cell functionality. Although there is a paucity of information about how diet and fatty acids modulate this process, it is possible that this will open up a new avenue of research relating to nutrient-sensitive metabolic inflammation.

154 citations


Journal ArticleDOI
TL;DR: Convincing evidence for association was found only for the intake of alcohol and whole grains in relation to colorectal cancer risk and among the examined gene-diet interactions, only one had moderately strong evidence.
Abstract: It is speculated that genetic variants are associated with differential responses to nutrients (known as gene-diet interactions) and that these variations may be linked to different cancer risks. In this review, we critically evaluate the evidence across 314 meta-analyses of observational studies and randomized controlled trials of dietary risk factors and the five most common cancers (breast, lung, prostate, colorectal, and stomach). We also critically evaluate the evidence across 13 meta-analyses of observational studies of gene-diet interactions for the same cancers. Convincing evidence for association was found only for the intake of alcohol and whole grains in relation to colorectal cancer risk. Three nutrient associations had highly suggestive evidence and another 15 associations had suggestive evidence. Among the examined gene-diet interactions, only one had moderately strong evidence.

96 citations


Journal ArticleDOI
TL;DR: Small studies in human suggest that high phosphorus intake may result in positive phosphorus balance and correlate with renal calcification and albuminuria, and further prospective studies are needed to determine whether phosphorus intake is a modifiable risk factor for kidney disease.
Abstract: Although phosphorus is an essential nutrient required for multiple physiological functions, recent research raises concerns that high phosphorus intake could have detrimental effects on health. Phosphorus is abundant in the food supply of developed countries, occurring naturally in protein-rich foods and as an additive in processed foods. High phosphorus intake can cause vascular and renal calcification, renal tubular injury, and premature death in multiple animal models. Small studies in human suggest that high phosphorus intake may result in positive phosphorus balance and correlate with renal calcification and albuminuria. Although serum phosphorus is strongly associated with cardiovascular disease, progression of kidney disease, and death, limited data exist linking high phosphorus intake directly to adverse clinical outcomes. Further prospective studies are needed to determine whether phosphorus intake is a modifiable risk factor for kidney disease.

78 citations


Journal ArticleDOI
TL;DR: This review considers the motivation, design, and implementation of N-of-1 trials in translational nutrition research that are meant to assess the utility of personalized nutritional strategies, and considers the development of strategies and algorithms for matching nutritional needs to individual biomedical profiles and the issues surrounding them.
Abstract: There is a great deal of interest in personalized, individualized, or precision interventions for disease and health-risk mitigation. This is as true of nutrition-based intervention and prevention strategies as it is for pharmacotherapies and pharmaceutical-oriented prevention strategies. Essentially, technological breakthroughs have enabled researchers to probe an individual's unique genetic, biochemical, physiological, behavioral, and exposure profile, allowing them to identify very specific and often nuanced factors that an individual might possess, which may make it more or less likely that he or she responds favorably to a particular intervention (e.g., nutrient supplementation) or disease prevention strategy (e.g., specific diet). However, as compelling and intuitive as personalized nutrition might be in the current era in which data-intensive biomedical characterization of individuals is possible, appropriately and objectively vetting personalized nutrition strategies is not trivial and requires no...

Journal ArticleDOI
TL;DR: Understanding mechanisms by which the hibernator host and its gut symbionts adapt to the altered nutritional landscape during winter fasting may provide insights into protective mechanisms that are compromised when nonhibernating species, such as humans, undergo long periods of enteral nutrient deprivation.
Abstract: Animals that undergo seasonal cycles of feeding and fasting have adaptations that maintain integrity of organ systems when dietary nutrients are lacking. Food deprivation also challenges the gut microbiota, which relies heavily on host diet for metabolic substrates and the gastrointestinal tract, which is influenced by enteral nutrients and microbial activity. Winter fasting in hibernators shifts the microbiota to favor taxa with the capacity to degrade and utilize host-derived substrates and disfavor taxa that prefer complex plant polysaccharides. Microbiome alterations may contribute to hibernation-induced changes in the intestinal immune system, epithelial barrier function, and other host features that are affected by microbial short-chain fatty acids and other metabolites. Understanding mechanisms by which the hibernator host and its gut symbionts adapt to the altered nutritional landscape during winter fasting may provide insights into protective mechanisms that are compromised when nonhibernating species, such as humans, undergo long periods of enteral nutrient deprivation.

Journal ArticleDOI
TL;DR: Present knowledge seems to substantiate a concern that screening for CKD should be considered before and during long-term, high-protein intake, and results conflict and do not allow any conclusion about kidney-damaging effects of long- term, high -protein intake.
Abstract: Chronic kidney disease (CKD) has a prevalence of approximately 13% and is most frequently caused by diabetes and hypertension. In population studies, CKD etiology is often uncertain. Some experimental and observational human studies have suggested that high-protein intake may increase CKD progression and even cause CKD in healthy people. The protein source may be important. Daily red meat consumption over years may increase CKD risk, whereas white meat and dairy proteins appear to have no such effect, and fruit and vegetable proteins may be renal protective. Few randomized trials exist with an observation time greater than 6 months, and most of these were conducted in patients with preexisting diseases that dispose to CKD. Results conflict and do not allow any conclusion about kidney-damaging effects of long-term, high-protein intake. Until additional data become available, present knowledge seems to substantiate a concern. Screening for CKD should be considered before and during long-term, high-protein intake.

Journal ArticleDOI
TL;DR: Little progress has been made searching for risk-causative variants in candidate genes; therefore, more complex genetic and epigenetic methodologies are now being considered.
Abstract: Neural tube defects (NTDs) are the most severe congenital malformations of the central nervous system. The etiology is complex, with both genetic and environmental factors having important contributions. Researchers have known for the past two decades that maternal periconceptional use of the B vitamin folic acid can prevent many NTDs. Though this finding is arguably one of the most important recent discoveries in birth defect research, the mechanism by which folic acid exerts this benefit remains unknown. Research to date has focused on the hypothesis that an underlying genetic susceptibility interacts with folate-sensitive metabolic processes at the time of neural tube closure. Little progress has been made searching for risk-causative variants in candidate genes; therefore, more complex genetic and epigenetic methodologies are now being considered. This article reviews the research to date that has been targeted on this important gene-nutrient locus.

Journal ArticleDOI
TL;DR: This article looks at both nutrition and early childhood stimulation interventions as part of an integrated life cycle approach to development, drawing mainly on experience in low- and middle-income countries where undernutrition and poor child development remain significant public health challenges with implications across the life course.
Abstract: This article looks at both nutrition and early childhood stimulation interventions as part of an integrated life cycle approach to development. We build on recent systematic reviews of child development, which are comprehensive in regard to what is currently known about outcomes reported in key studies. We then focus particularly on implementation, scaling, and economic returns, drawing mainly on experience in low- and middle-income countries where undernutrition and poor child development remain significant public health challenges with implications across the life course.

Journal ArticleDOI
TL;DR: In this article, a review examines human feeding behavior in light of psychological motivational theory and highlights the importance of midbrain dopamine (DA) for increased body weight, and argues that it is more complex than an either/or scenario when examining DA's role in reward sensitivity, eating, and obesity.
Abstract: This review examines human feeding behavior in light of psychological motivational theory and highlights the importance of midbrain dopamine (DA). Prospective evidence of both reward surfeit and reward deficit pathways to increased body weight are evaluated, and we argue that it is more complex than an either/or scenario when examining DA's role in reward sensitivity, eating, and obesity. The Taq1A genotype is a common thread that ties the contrasting models of DA reward and obesity; this genotype related to striatal DA is not associated with obesity class per se but may nevertheless confer an increased risk of weight gain. We also critically examine the concept of so-called food addiction, and despite growing evidence, we argue that there is currently insufficient human data to warrant this diagnostic label. The surgical and pharmacological treatments of obesity are discussed, and evidence is presented for the selective use of DA-class drugs in obesity treatment.

Journal ArticleDOI
TL;DR: Clinical outcomes that have been associated with FGF23, potential mechanisms for these observations and their public health implications are discussed, and clinical and population health interventions that aim to reduce FGF 23 levels and improve public health are explored.
Abstract: The discovery of fibroblast growth factor 23 (FGF23) has provided a more complete understanding of the regulation of phosphate and mineral homeostasis in health and in chronic kidney disease. It has also offered new insights into stratification of risk of cardiovascular events and death among patients with chronic kidney disease and the general population. In this review, we provide an overview of FGF23 biology and physiology, summarize clinical outcomes that have been associated with FGF23, discuss potential mechanisms for these observations and their public health implications, and explore clinical and population health interventions that aim to reduce FGF23 levels and improve public health.

Journal ArticleDOI
TL;DR: The function of HCS and biotin in metabolism and human disease, a putative role for the enzyme in histone biotinylation, and its participation as a nuclear factor in chromatin dynamics are discussed.
Abstract: The vitamin biotin is an essential nutrient for the metabolism and survival of all organisms owing to its function as a cofactor of enzymes collectively known as biotin-dependent carboxylases. These enzymes use covalently attached biotin as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In human cells, biotin-dependent carboxylases catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Biotin is attached to apocarboxylases by a biotin ligase: holocarboxylase synthetase (HCS) in mammalian cells and BirA in microbes. Despite their evolutionary distance, these proteins share structural and sequence similarities, underscoring their importance across all life forms. However, beyond its role in metabolism, HCS participates in the regulation of biotin utilization and acts as a nuclear transcriptional coregulator of gene expression. In this review, we discuss the function of HCS and biotin in metabolism and human disease, a putative role for the enzyme in histone biotinylation, and its participation as a nuclear factor in chromatin dynamics. We suggest that HCS be classified as a moonlighting protein, with two biotin-dependent cytosolic metabolic roles and a distinct biotin-independent nuclear coregulatory function.

Journal ArticleDOI
TL;DR: A personal recollection of the journey that starts with measurement certainty and ends with policy uncertainty of the clinical problem of hypoglycemia in children with illnesses that limited their food intake is provided.
Abstract: Nearly 50 years ago, I set out to investigate the clinical problem of hypoglycemia in children with illnesses that limited their food intake. My goal was to gather accurate and precise measurable data. At the time, I wasn't interested in nutrition as a discipline defined in its more general or popular sense. To address the specific problem that interested me required development of entirely new methods based on stable, nonradioactive tracers that satisfied the conditions of accuracy and precision. At the time, I had no inclination of the various theoretical and practical problems that would have to be solved to achieve this goal. Some are briefly described here. Nor did I have the slightest idea that developing the field would result in a fundamental change in how human clinical investigation was conducted, with the eventual replacement of radiotracers with stable isotopically labeled ones, even for adult clinical investigation. Additionally, I had no inclination that the original questions would open avenues to much broader questions of practical nutritional relevance. Moreover, only much later as the editor of The American Journal of Clinical Nutrition did I appreciate the policy implications of how nutritional data are presented in the scientific literature. At least in part, less accurate and precise measurements and less than full transparency in reporting nutritional data have resulted in widespread debate about the public policy recommendations and guidelines that are the intended result of collecting the data in the first place. This article provides a personal recollection (with all the known faults of self-reporting and retrospective memory) of the journey that starts with measurement certainty and ends with policy uncertainty.

Journal ArticleDOI
TL;DR: The best of times for nutrition science and policy converged and led to important policies and programs that shaped the field for the next 50 years as mentioned in this paper, which was the best time in nutrition science.
Abstract: I came of age as a nutrition scientist during the best of times-years that spanned a rapidly changing world of food and nutrition science, politics, and policy that greatly broadened the specialty and its influence on public affairs I followed the conventional route in academe, working my way up the academic ladder in Boston from a base first in a school of public health and later in a teaching hospital and medical school, interspersed with stints in Washington, DC Thus I tell a tale of two cities Those were the best of times because nutrition science and policy converged and led to important policies and programs that shaped the field for the next 50 years