scispace - formally typeset
Search or ask a question

Showing papers in "Applied Microbiology and Biotechnology in 1997"


Journal ArticleDOI
TL;DR: This review will focus on the use of filamentous fungi for the production of heterologous proteins, especially non-fungal, proteins and the effect of gene-fusion strategies will be reviewed.
Abstract: Filamentous fungi are widely used for the production of homologous and heterologous proteins but, compared to homologous proteins, the levels of production of heterologous proteins are usually low. During the last 5 years, the levels of production of heterologous proteins have been drastically improved by fusing the corresponding gene to the 3' end of a homologous gene, encoding a well-secreted protein such as glucoamylase. Nevertheless, little research has been carried out to determine the limitations that hamper heterologous protein production. Recently we have carried out a detailed analysis of the levels of production of several proteins and glucoamylase fusion proteins in defined recombinant Aspergillus awamori strains. In this review we will focus on the use of filamentous fungi for the production of heterologous, especially non-fungal, proteins. In particular, the effect of gene-fusion strategies will be reviewed. Furthermore, the remaining limitations in heterologous protein production and suggestions for improvement strategies for overproduction of these protein will be discussed.

343 citations


Journal ArticleDOI
TL;DR: A survey of current knowledge of the molecular genetics and biochemistry of bacterial alginate biosynthesis, as well as of the biotechnological potential of such polymers is presented.
Abstract: Alginate is a copolymer of β-d-mannuronic acid and α-l-guluronic acid (GulA), linked together by 1–4 linkages. The polymer is a well-established industrial product obtained commercially by harvesting brown seaweeds. Some bacteria, mostly derived from the genus Pseudomonas and belonging to the RNA superfamily I, are also capable of producing copious amounts of this polymer as an exopolysaccharide. The molecular genetics, regulation and biochemistry of alginate biosynthesis have been particularly well characterized in the opportunistic human pathogen Pseudomonas aeruginosa, although the biochemistry of the polymerization process is still poorly understood. In the last 3 years major aspects of the molecular genetics of alginate biosynthesis in Azotobacter vinelandii have also been reported. In both organisms the immediate precursor of polymerization is GDP-mannuronic acid, and the sugar residues in this compound are polymerized into mannuronan. This uniform polymer is then further modified by acetylation at positions O-2 and/or O-3 and by epimerization of some of the residues, leading to a variable content of acetyl groups and GulA residues. In contrast, seaweed alginates are not acetylated. The nature of the epimerization steps are more complex in A. vinelandii than in P. aeruginosa, while other aspects of the biochemistry and genetics of alginate biosynthesis appear to be similar. The GulA residue content and distribution strongly affect the physicochemical properties of alginates, and the epimerization process is therefore of great interest from an applied point of view. This article presents a survey of our current knowledge of the molecular genetics and biochemistry of bacterial alginate biosynthesis, as well as of the biotechnological potential of such polymers.

312 citations


Journal ArticleDOI
TL;DR: In this article, the wet organic fraction of household wastes was digested anaerobically at 37 °C and 55 °C at both temperatures for the same loading rates and was still 65% at 19 days hydraulic retention time.
Abstract: The wet organic fraction of household wastes was digested anaerobically at 37 °C and 55 °C. At both temperatures the volatile solids loading was increased from 1 g l−1 day−1 to 9.65 g l−1 day−1, by reducing the nominal hydraulic retention time from 93 days to 19 days. The volatile solids removal in the reactors at both temperatures for the same loading rates was in a similar range and was still 65% at 19 days hydraulic retention time. Although more biogas was produced in the thermophilic reactor, the energy conservation in methane was slightly lower, because of a lower methane content, compared to the biogas of the mesophilic reactor. The slightly lower amount of energy conserved in the methane of the thermophilic digester was presumably balanced by the hydrogen that escaped into the gas phase and thus was no longer available for methanogenesis. In the thermophilic process, 1.4 g/l ammonia was released, whereas in the mesophilic process only 1 g/l ammonia was generated, presumably from protein degradation. Inhibition studies of methane production and glucose fermentation revealed a Ki (50%) of 3 g/l and 3.7 g/l ammonia (equivalent to 0.22 g/l and 0.28 g/l free NH3) at 37 °C and a Ki (50%) of 3.5 g/l and 3.4 g/l ammonia (equivalent to 0.69 g/l and 0.68 g/l free NH3) at 55 °C. This indicated that the thermophilic flora tolerated at least twice as much of free NH3 than the mesophilic flora and, furthermore, that the thermophilic flora was able to degrade more protein. The apparent ammonia concentrations in the mesophilic and in the thermophilic biowaste reactor were low enough not to inhibit glucose fermentation and methane production of either process significantly, but may have been high enough to inhibit protein degradation. The data indicated either that the mesophilic and thermophilic protein degraders revealed a different sensitivity towards free ammonia or that the mesophilic population contained less versatile protein degraders, leaving more protein undegraded.

299 citations


Journal ArticleDOI
TL;DR: Many base metals and a few precious metals as well as some metalloids can be enzymatically or non-enzymatically concentrated and dispersed by microbes in their environment.
Abstract: Many base metals and a few precious metals as well as some metalloids can be enzymatically or non-enzymatically concentrated and dispersed by microbes in their environment. Some of these activities are commercially exploited or have a potential for it. This article summarizes these activities and the commercial or potentially commercial use of some of them.

253 citations


Journal ArticleDOI
TL;DR: The methylotrophic yeast Pichia pastoris was tested as a host for the production of long, repetitive protein polymers and synthetic genes for a designed analog of a spider dragline silk protein were readily expressed at high levels under control of the methanol-inducible AOX1 promoter.
Abstract: The methylotrophic yeast Pichia pastoris was tested as a host for the production of long, repetitive protein polymers. Synthetic genes for a designed analog of a spider dragline silk protein were readily expressed at high levels under control of the methanol-inducible AOX1 promoter. Transformants containing multiple gene copies produced elevated levels of silk protein, but of a variety of altered sizes as a result of gene rearrangements at the time of transformation. Genes up to 3000 codons in length or longer could be expressed with no evidence of the prevalent truncated synthesis observed for similar genes in Escherichia coli, though genes longer than 1600 codons were expressed less efficiently than shorter genes. Silk-producing P. pastoris strains were stable without selection for at least 100 doublings.

244 citations


Journal ArticleDOI
TL;DR: Eighteen fungal strains, known for their ability to degrade lignocellulosic material or lignin derivatives, were screened for their potential to decolorize commercially used reactive textile dyes and only Bjerkandera adusta, Trametes versicolor and Phanerochaete chrysosporium were able toDecolorize all the dyes tested.
Abstract: Eighteen fungal strains, known for their ability to degrade lignocellulosic material or lignin derivatives, were screened for their potential to decolorize commercially used reactive textile dyes. Three azo dyes, Reactive Orange 96, Reactive Violet 5 and Reactive Black 5, and two phthalocyanine dyes, Reactive Blue 15 and Reactive Blue 38, were chosen as representatives of commercially used reactive dyes. From the 18 tested fungal strains only Bjerkandera adusta, Trametes versicolor and Phanerochaete chrysosporium were able to decolorize all the dyes tested. During degradation of the nickel-phthalocyanine complex, Reactive Blue 38, by B. adusta and T. versicolor respectively, the toxicity of this dye to Vibrio fischeri was significantly reduced. In the case of Reactive Violet 5, a far-reaching detoxification was achieved by treatment with B. adusta. Reactive Blue 38 and Reactive Violet 5 were decolorized by crude exoenzyme preparations from T. versicolor and B. adusta in a H2O2-dependent reaction. Specific activities of the exoenzyme preparations with the dyes were determined and compared to oxidation rates by commercial horseradish peroxidase.

229 citations


Journal ArticleDOI
S. R. Fahnestock1, S. L. Irwin1
TL;DR: Synthetic genes were designed to encode analogs of the two proteins of Nephila clavipes dragline silk, spidroins 1 and 2, which encoded proteins of high molecular mass and produced efficiently in Escherichia coli.
Abstract: Synthetic genes were designed to encode analogs of the two proteins of Nephila clavipes dragline silk, spidroins 1 and 2. The genes were constructed of tandem repeats of relatively long (more than 300 bp) DNA sequences assembled from synthetic oligonucleotides, and encoded proteins of high molecular mass (65–163 kDa). Both analogs were produced efficiently in Escherichia coli. The yield and homogeneity of the products of longer genes were limited by premature termination of synthesis, probably as a result of processivity errors in protein synthesis. Average termination rates were determined to be 1 in 1100 codons to 1 in 300 codons, depending on the length and synonymous codon choices of the gene. Both analog proteins could be induced to form stable aqueous solutions without denaturants. Circular dichroism spectra of the purified proteins in dilute solution resembled spectra of redissolved natural dragline silk in reflecting a largely disordered structure in water and more ordered structures in mixed solvents with methanol and trifluoroethanol.

206 citations


Journal ArticleDOI
TL;DR: In this paper, diesel-oil-contaminated alpine subsoils, differing in soil type and bedrock, were investigated in laboratory experiments at 10 °C after supplementation with an inorganic fertilizer.
Abstract: Bioremediation of two diesel-oil-contaminated alpine subsoils, differing in soil type and bedrock, was investigated in laboratory experiments at 10 °C after supplementation with an inorganic fertilizer. Initial diesel oil contamination of 4000 mg kg−1 soil dry matter (dm) was reduced to 380–400 mg kg−1 dm after 155 days of incubation. In both soils, about 30 % of the diesel oil contamination (1200 mg kg−1 dm) was eliminated by abiotic processes. The residual decontamination (60 %–65 %) could be attributed to microbial degradation activities. In both soils, the addition of a cold-adapted diesel-oil-degrading inoculum enhanced biodegradation rates only slightly and temporarily. From C/N and N/P ratios (determined by measuring the contents of total hydrocarbons, NH4+ N, NO3− N and PO43− P) of soils␣it could be deduced that there was no nutrient deficiency during the whole incubation period. Soil biological activities (basal respiration and dehydrogenase activity) corresponded to the course of biodegradation activities in the soils.

195 citations


Journal ArticleDOI
TL;DR: In order to enhance xylose utilisation in the XYL1-, XYL2-containing S. cerevisiae strains, the native genes encoding transketolase and transaldolase were also overexpressed.
Abstract: Saccharomyces cerevisiae was transformed with the Pichia stipitis CBS 6054 XYL1 and XYL2 genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) respectively. The XYL1 and XYL2 genes were placed under the control of the alcohol dehydrogenase 1 (ADH1) and phosphoglycerate kinase (PGK1) promoters in the yeast vector YEp24. Different vector constructions were made resulting in different specific activities of XR and XDH. The XR:XDH ratio (ratio of specific enzyme activities) of the transformed S. cerevisiae strains varied from 17.5 to 0.06. In order to enhance xylose utilisation in the XYL1-, XYL2-containing S. cerevisiae strains, the native genes encoding transketolase and transaldolase were also overexpressed. A strain with an XR:XDH ratio of 17.5 formed 0.82 g xylitol/g consumed xylose, whereas a strain with an XR:XDH ratio of 5.0 formed 0.58 g xylitol/g xylose. The strain with an XR:XDH ratio of 0.06, on the other hand, formed no xylitol and less glycerol and acetic acid compared with strains with the higher XR:XDH ratios. In addition, the strain with an XR:XDH ratio of 0.06 produced more ethanol than the other strains.

192 citations


Journal ArticleDOI
TL;DR: The reintroduction of indigenous microorganisms isolated from the contaminated site after culturing seems to be a highly effective bioremediation method, especially when microorganism growth is supplemented by oxygen and fertilizers.
Abstract: The sampling and analytical methods, along with available microorganisms, used for in situ hydrocarbon bioremediation are reviewed. Each treatment method is briefly described and its advantages and limitations pertaining to potential applications are evaluated. Bioremediation provides cost-effective, contaminant- and substrate-specific treatments equally successful in reducing the concentrations of single compounds or mixtures of biodegradable materials. In situ treatments rarely yield undesirable byproducts, but precautions and preliminary baseline tests are always recommended. Sampling methods should adhere to good laboratory and field practices and usually do not require highly trained personnel. Analytical methods vary in sensitivity, cost, duration of sample analysis and personnel training required. Voucher specimens of bacterial strains used in bioremediation exist in various repositories (e.g. ATCC, DSM, etc.) or are commercially available, and are usually covered by patent rights. Each one of these strains may yield spectacular results in vitro for specific target compounds. However, the overall success of such strains in treating a wide range of contaminants in situ remains limited. The reintroduction of indigenous microorganisms isolated from the contaminated site after culturing seems to be a highly effective bioremediation method, especially when microorganism growth is supplemented by oxygen and fertilizers.

186 citations


Journal ArticleDOI
TL;DR: It is suggested that astaxanthin accumulated in the cyst cells functions as an antioxidant against excessive oxidative stress and the presence of antioxidative enzymes (superoxide dismutase).
Abstract: The green unicellular alga, Haematococcus pluvialis has two antioxidative mechanisms against environmental oxidative stress: antioxidative enzymes in vegetative cells and the antioxidative ketocarotenoid, astaxanthin, in cyst cells. We added a reagent that generates superoxide anion radicals (O2 −), methyl viologen, to mature and immature cysts of H. pluvialis. Tolerance to methyl viologen was higher in mature than in immature cysts. Mature (astaxanthin-rich) cysts showed high antioxidant activity against O2 − in permeabilized cells, but not in astaxanthin-free cell extracts, while immature (astaxanthin-poor) cysts had very low antioxidant activities against O2 − in both. The results suggested that astaxanthin accumulated in the cyst cells functions as an antioxidant against excessive oxidative stress. The same levels of antioxidant activities against O2 − in both permeabilized cells and cell extracts from vegetative cells suggested the presence of antioxidative enzymes (superoxide dismutase).

Journal ArticleDOI
TL;DR: Three pure bacterial cultures degrading methyl t-butyl ether were isolated from activated sludge and fruit of the Gingko tree and the availability of pure cultures will allow the determination of the pathway intermediates and the rate-limiting steps in the degradation of MTBE.
Abstract: Three pure bacterial cultures degrading methyl t-butyl ether (MTBE) were isolated from activated sludge and fruit of the Gingko tree. They have been classified as belonging to the genuses Methylobacterium, Rhodococcus, and Arthrobacter. These cultures degraded 60 ppm MTBE in 1–2 weeks of incubation at 23–25 °C. The growth of the isolates on MTBE as sole carbon source is very slow compared with growth on nutrient-rich medium. Uniformly-labeled [14C]MTBE was used to determine 14CO2 evolution. Within 7 days of incubation, about 8% of the initial radioactivity was evolved as 14CO2. These strains also grow on t-butanol, butyl formate, isopropanol, acetone and pyruvate as carbon sources. The presence of these compounds in combination with MTBE decreased the degradation of MTBE. The cultures pregrown on pyruvate resulted in a reduction in 14CO2 evolution from [14C]MTBE. The availability of pure cultures will allow the determination of the pathway intermediates and the rate-limiting steps in the degradation of MTBE.

Journal ArticleDOI
TL;DR: In this paper, the effect of fermentation process conditions, namely pH, temperature, rates of agitation and aeration, on surfactin production was extensively studied to optimize the process conditions for the maximum production of surfactins.
Abstract: Response-surface methodology was applied to determine the effect of the fermentation process conditions, namely pH, temperature, rates of agitation and aeration, on surfactin production. The effects of the mutual interactions between these parameters were extensively studied to optimize the process conditions for the maximum production of surfactin. With a view to simultaneously reducing the number of experiments and obtaining the mutual interactions between the variables required for achieving the optimal experimental conditions, a 24 full-factorial central composite design followed by multi-stage Monte-Carlo optimization was employed for experimental design and analysis of the results. The optimum process conditions for the enhanced production of surfactin were as follows: pH = 6.755, temperature = 37.4 °C, agitation = 140 rpm and aeration = 0.75 vvm. Relative surfactin concentrations were denoted by the reciprocal of the critical micelle concentrations.

Journal ArticleDOI
TL;DR: An efficient one-step transformation method for the dimorphic yeast Yarrowia lipolytica using cells grown overnight on agar plates is described, which was better than 105 transformants/μg replicative plasmid DNA.
Abstract: An efficient one-step transformation method for the dimorphic yeast Yarrowia lipolytica is described. Using cells grown overnight on agar plates, the whole process is carried out within 1 h. The transformant clones could be recovered on selective plates as early as 36–48 h after plating. The efficiency was better than 105 transformants/μg replicative plasmid DNA. Effects of cell density, dithiothreitol, heat shock, poly(ethylene glycol) 4000 concentration and the wetness of selective plates were investigated.

Journal ArticleDOI
TL;DR: Biological phosphate removal has become a reliable and well-understood process for wastewater treatment and has shown that highly complex biological processes can be designed and controlled, provided that the importance of the prevailing microbiological ecological processes is recognised.
Abstract: Biological phosphate removal has become a reliable and well-understood process for wastewater treatment. This review describes the historical development of the process and the most important microbiological and process-engineering aspects. From a microbiological point of view, the role of␣poly(hydroxyalkanoates) as storage material in a dynamic process and the use of polyphosphate as an energy reserve are the most important findings. From a process-engineering point of view, the study of biological phosphate removal has shown that highly complex biological processes can be designed and controlled, provided that the importance of the prevailing microbiological ecological processes is recognised.

Journal ArticleDOI
TL;DR: In this paper, three strains, Propionibacterium acidipropionici, propionibacteria acnes and Clostridium propionicum, were tested for their ability to convert glycerol to propionic acid during batch fermentation with initially 20 g/l glycerols.
Abstract: Instead of the conventional carbon sources used for propionic acid biosynthesis, the utilization of glycerol is considered here, since the metabolic pathway involved in the conversion of glycerol to propionic acid is redox-neutral and energetic. Three strains, Propionibacterium acidipropionici, Propionibacterium acnes and Clostridium propionicum were tested for their ability to convert glycerol to propionic acid during batch fermentation with initially 20 g/l glycerol. P. acidipropionici showed higher efficiency in terms of fermentation time and conversion yield than did the other strains. The fermentation profile of this bacterium consisted in propionic acid as the major product (0.844 mol/mol), and in minimal by-products: succinic (0.055 mol/mol), acetic (0.023 mol/mol) and formic (0.020 mol/mol) acids and n-propanol (0.036 mol/mol). The overall propionic acid productivity was 0.18 g l−1h−1. A comparative study with glucose and lactic acid as carbon sources showed both less diversity in end-product composition and a 17% and 13% lower propionic acid conversion yield respectively than with glycerol. Increasing the initial glycerol concentration resulted in an enhanced productivity up to 0.36 g l−1h−1 and in a maximal propionic acid concentration of 42 g/l, while a slight decrease of the conversion yield was noticed. Such a propionic acid production rate was similar or higher than the values obtained with lactic acid (0.35 g l−1h−1) or glucose (0.28 g l−1h−1). These results demonstrated that glycerol is a carbon source of interest for propionic acid production.

Journal ArticleDOI
TL;DR: In this paper, the effects of ammonia-nitrogen supplementation on the mesophilic solid-substrate anaerobic digestion of municipal wastes and waste activated sludge (biosolids) were investigated.
Abstract: This work focused on determining the effects of ammonia-nitrogen supplementation on the mesophilic solid-substrate anaerobic digestion of municipal wastes and waste activated sludge (biosolids). Bench-scale, semi-continuous, mesophilic reactors were operated with a 21-day mass-retention time and dosed with NH4Cl, such that the corresponding chemical O2 demand (COD)/N ratios in their feeds were 90, 80, 65 and 50 (reactors R1 or control, R2, R3 and R4 respectively). Reactor performance was evaluated in terms of the efficiency of volatile solid removal (efficiency for short), biogas productivity, methane content in the biogas, pH and volatile organic acid contents, among other monitoring and analytical parameters. The feedstock was a mixture of urban wastes with biosolids. It was found that the process performance deteriorated at increasing dosages of ammonia N, the process practically ceasing at COD/N = 50 (R4). Inhibition was characterized by efficiency and biogas productivity decreases and a more sudden drop of methane content in biogas and pH. A significant rise of propionic, butyric and valeric acid was found in reactors receiving the highest doses of ammonia N (R3 and R4). This suggested that inhibition of the syntrophic bacteria present in the anaerobic consortia also occurred. Luong and Pearson inhibition models were fitted to the data. Both models represented very well the acute effects of N supplementation on solid-substrate anaerobic digestion. However, the Luong model could also represent the process ceasing at a critical ammonia N concentration of 2800 mg/kg mixed solids.

Journal ArticleDOI
TL;DR: Growth on wheat straw and beech wood led to increased values for both extra- and intracellular laccase activities, based on fungal dry weight, in comparison with growth on glucose.
Abstract: Trametes versicolor was shown to produce extracellular laccase during surface cultivation on glucose, wheat straw and beech wood. Growth on both wheat straw and beech wood led to an increase as high as 3.5-fold in extracellular laccase activity, in comparison with growth on glucose. The corresponding yields in fungal biomass reached only about 20% of the value obtained on glucose. Manganese peroxidase activity␣appeared during growth on wheat straw and beech wood. Mycelia grown on glucose, wheat straw and beech wood also showed intracellular laccase activities, monitored with 2,6-dimethoxyphenol, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), 4-hydroxy-3,5-dimethoxybenzaldehyde azine (syringaldazine) and 3,4-dihydroxyphenylalanine (l-DOPA). Assaying intracellular laccase with 2,6-dimethoxyphenol, syringaldazine and l-DOPA showed the maximum oxidation rates to be at pH values different from those producing maximum oxidation rates with extracellular laccase. In each case most of the total laccase activity was recovered from the culture filtrates. Growth on wheat straw and beech wood led to increased values for both extra- and intracellular laccase activities, based on fungal dry weight, in comparison with growth on glucose.

Journal ArticleDOI
TL;DR: Kinetic and stoichiometric parameters for the utilisation of olive oil were determined and a thermostable lipase was produced in continuous cultivation of a newly isolated thermophilic Bacillus sp.
Abstract: A thermostable lipase was produced in continuous cultivation of a newly isolated thermophilic Bacillus sp. strain IHI-91 growing optimally at 65 degrees C. Lipase activity decreased with increasing dilution rate while lipase productivity showed a maximum of 340 U l-1 h-1 at a condition rate of 0.4 h-1. Lipase productivity was increased by 50% compared to data from batch fermentations. Up to 70% of the total lipase activity measured was associated to cells and by-products or residual substrate. Kinetic and stoichiometric parameters for the utilisation of olive oil were determined. The maximal biomass output method led to a saturation constant Ks of 0.88 g/l. Both batch growth data and a washout experiment yielded a maximal specific growth rate, mu max, of 1.0 h-1. Oxygen uptake rates of up to 2.9 g l-1 h-1 were calculated and the yield coefficient, Y X/O, was determined to be 0.29 g dry cell weight/g O2. From an overall material balance the yield coefficient, Y X/S, was estimated to be 0.60 g dry cell weight/g olive oil.

Journal ArticleDOI
TL;DR: This review focuses on the biology of linear plasmids, their environmental significance and their use as tools in molecular and applied microbiology.
Abstract: While plasmids were originally considered to be generally circular until almost two decades ago, linear elements were reported to exist as well They are now known to be common genetic elements in both, pro- and eukaryotes Two types of linear plasmids exist, the so-called hairpin plasmids with covalently closed ends and those with proteins bound to their 5' termini Hairpin plasmids are common in human-pathogenic Borrelia spirochetes, in which they are instrumental in escape from the immunological response; cryptic hairpin elements are present in mitochondria of the plant pathogenic fungus Rhizoctonia solani Plasmids with 5' attached proteins constitute the largest group In actinomycetous bacteria they are conjugative and usually confer advantageous phenotypes, eg formation of antibiotics, degradation of xenobiotics, heavy-metal resistance and growth on hydrogen as the sole energy source In contrast, the majority of linear plasmids from eukaryotes are cryptic, with only a few exceptions In some yeasts a killer phenotype may be associated, the most thoroughly investigated elements being those from Kluyveromyces lactis killer strains In Neurospora spp and in Podospora anserina, senescence and longevity respectively are correlated with linear plasmids This review focuses on the biology of linear plasmids, their environmental significance and their use as tools in molecular and applied microbiology

Journal ArticleDOI
TL;DR: This arabinofuranohydrolase released arabinosyl groups from wheat flour arabinoxylan polymer but showed no activity towards p-nitrophenyl α-l-arabinofuranoside or towards sugar-beet arabinan, soy arabinogalactan, arabino-oligosaccharides and arabinogsalacto-oligenes.
Abstract: An arabinofuranohydrolase (AXH-d3) was purified from a cell-free extract of Bifidobacterium adolescentis DSM 20083. The enzyme had a molecular mass of approximately 100 kDa as determined by gel filtration. It displayed maximum activity at pH 6 and 30 °C. Using an arabinoxylan-derived oligosaccharide containing double-substituted xylopyranosyl residues established that the enzyme specifically released terminal arabinofuranosyl residues linked to C-3 of double-substituted xylopyranosyl residues. In addition, this arabinofuranohydrolase released arabinosyl groups from wheat flour arabinoxylan polymer but showed no activity towards p-nitrophenyl α-l-arabinofuranoside or towards sugar-beet arabinan, soy arabinogalactan, arabino-oligosaccharides and arabinogalacto-oligosaccharides.

Journal ArticleDOI
TL;DR: The inhibitory effect of acetic acid in the fermentor was found to be much less than that in a shaker culture, and the mathematical predictions of cell growth in a dialysis reactor were predicted.
Abstract: High-cell-density cultivations of Escherichia coli K12 in a dialysis reactor with controlled levels of dissolved oxygen were carried out with different carbon sources: glucose and glycerol. Extremely high cell concentrations of 190 g/l and 180 g/l dry cell weight were obtained in glucose medium and in glycerol medium respectively. Different behaviour was observed in the formation of acetic acid in these cultivations. In glucose medium, acetic acid was formed during the earlier phase of cultivation. However, in glycerol medium, acetic acid formation started later and was particularly rapid at the end of the cultivation. In order to estimate the influence of acetic acid during these high-cell-density cultivations, the inhibitory effect of acetic acid on cell growth was investigated under different culture conditions. It was found that the inhibition of cell growth by acetic acid in the fermentor was much less than that in a shaker culture. On the basis of the results obtained in these investigations of the inhibitory effect of acetic acid, and the mathematical predictions of cell growth in a dialysis reactor, the influence of acetic acid on high-cell-density cultivation is discussed.

Journal ArticleDOI
S Kusaka, H Abe, Sang Yup Lee1, Y Doi
TL;DR: It has been suggested that a chain-transfer agent is generated in E. coli cells during the accumulation of PHB, and the values for PHB were markedly dependent on the cultivation conditions of the E. coli.
Abstract: Poly[(R)-3-hydroxybutyric acid] (PHB) was produced at 37 degrees C by a recombinant Escherichia coli harboring the Alcaligenes eutrophus biosynthesis phb-CAB genes in Luria-Bertani media containing glucose at 10-30 g/l at different pH values and the time-dependent changes in the molecular mass of PHB were studied. PHB polymers accumulated within cells while glucose was present in the medium. The number-average molecular mass of PHB decreased with time during the course of PHB accumulation, and the values for PHB were markedly dependent on the cultivation conditions of the E. coli, ranging from 0.5 MDa to 20 MDa. Under specific conditions (pH 6.0), E. coli produced PHB with an extremely high molecular mass (20 MDa). It has been suggested that a chain-transfer agent is generated in E. coli cells during the accumulation of PHB.

Journal ArticleDOI
TL;DR: During laccase-catalyzed oxidation of beech wood fibers in an aqueous suspension, phenoxy radicals were detected in steady-state concentrations by electron-spin resonance (ESR) spectrometry of the suspension liquid, suggesting that colloidal lignin functions as a mediator between l Accase and the fiber lign in matrix.
Abstract: During laccase-catalyzed oxidation of beech wood fibers in an aqueous suspension, phenoxy radicals were detected in steady-state concentrations by electron-spin resonance (ESR) spectrometry of the suspension liquid, suggesting that colloidal lignin functions as a mediator between laccase and the fiber lignin matrix. Phenoxy radicals were observed directly, whereas ESR spin-trapping techniques gave no evidence for reduced oxygen species, such as the superoxide or hydroxyl radical. A reaction mechanism involving parallel direct oxidation of the lignin on fiber surfaces and a phenol/phenoxy cyclic mediator process in the suspension liquid could accordingly describe laccase-catalyzed oxidation of beech wood fibers. Cytochrome c assays for detection of superoxide in systems involving lignin oxidized by oxidoreductases should be used with caution, as cytochrome c may be reduced by species other than superoxide.

Journal ArticleDOI
TL;DR: The results suggest that the increased flux in the meta-bolic pathway of specific amino acids such as proline is effective for breeding novel freeze-tolerant yeasts.
Abstract: Since some amino acids, polyols and sugars in cells are thought to be osmoprotectants, we expected that several amino acids might also contribute to enhancing freeze tolerance in yeast cells. In fact, proline and charged amino acids such as glutamate, arginine and lysine showed a marked cryoprotective activity nearly equivalent to that of glycerol or trehalose, both known as major cryoprotectants for Saccharomyces cerevisiae. To investigate the cryoprotective effect of proline on the freezing stress of yeast, we isolated proline-analogue-resistant mutants derived from a proline-non-utilizing strain of S. cerevisiae. When cultured in liquid minimal medium, many mutants showed a prominent increase, two- to approximately tenfold, in cell viability compared to the parent after freezing in the medium at -20 degrees C for 1 week. Some of the freeze-tolerant mutants were found to accumulate a higher amount of proline, as well as of glutamate and arginine which are involved in proline metabolism. It was also observed that proline-non-utilizer and the freeze-tolerant mutants were able to grow against osmotic stress. These results suggest that the increased flux in the metabolic pathway of specific amino acids such as proline is effective for breeding novel freeze-tolerant yeasts.

Journal ArticleDOI
TL;DR: Nisin production was found to be inhibited by high concentrations of nisin, when grown in excess nutrient, even though growth of the culture continued because nutrient limitation was not operating, and in low nutrient concentrations nisinProduction was limited by nutrient depletion.
Abstract: The kinetics of nisin production was studied in batch cultures using a construct of Lactococcuslactis subsp. lactis C2SmPrt−, containing a transposon (TnNip) that encodes nisin production. The introduction of TnNip into C2SmPrt−significantly lowered the specific growth rate and the maximum A620 reached was reduced from 15.2 to 11.0. The effect of nisin concentration and nutrient depletion on nisin production of the construct, C2SmPrt−(TnNip), was examined. Nisin production was found to be inhibited by high concentrations of nisin, when grown in excess nutrient, even though growth of the culture continued because nutrient limitation was not operating. However, in low nutrient concentrations nisin production was limited by nutrient depletion. The specific growth rate of C2SmPrt−(TnNip) was altered, by using different nutrient concentrations and different sugars, in order to examine the relationship between nisin production and growth. Nisin production was shown to be growth-associated for most of growth, but near the end of growth, when the specific growth rate was 0.05 h−1 or less, the production ceased.

Journal ArticleDOI
TL;DR: In this article, carbon steel samples were exposed to complex liquid media containing either the aerobic bacterium Pseudomonas fragi or the facultative anaerobe Escherichia coli DH5α.
Abstract: Carbon steel (SAE 1018) samples were exposed to complex liquid media containing either the aerobic bacterium Pseudomonas fragi or the facultative anaerobe Escherichia coli DH5α. Compared to sterile controls, mass loss was consistently 2- to 10-fold lower in the presence of these bacteria which produce a protective biofilm. Increasing the temperature from 23 °C to 30 °C resulted in a 2- to 5-fold decrease in corrosion inhibition with P. fragi whereas the same shift in temperature resulted in a 2-fold increase in corrosion inhibition with E. coli DH5α. Corrosion observed with non-biofilm-forming Streptomyces lividans TK24 was similar to that observed in sterile media. A dead biofilm, generated in situ by adding kanamycin to an established biofilm, did not protect the metal (corrosion rates were comparable to those in the sterile control), and mass loss in cell-free, spent Luria-Bertani (LB) medium was similar to that in sterile medium. Confocal laser scanning microscopy analysis confirmed the presence of a biofilm consisting of live and dead cells embedded in a sparse glycocalyx matrix. Mass-loss measurements were consistent with microscopic observations of the metal surface after 2 weeks of exposure, indicating that uniform corrosion occurred. The biofilm was also able to withstand mild agitation (60 rpm), provided that sufficient time was given for its development.

Journal ArticleDOI
TL;DR: In this paper, a batch experiment was conducted to evaluate the biodegradation rates of limonene, α-pinene, γ-terpinenes, terpinolene and α-terpineol at 23 °C under aerobic conditions.
Abstract: Batch experiments were conducted to evaluate the biodegradation rates of limonene, α-pinene, γ-terpinene, terpinolene and α-terpineol at 23 °C under aerobic conditions. Biodegradation was demonstrated by the depletion of monoterpene mass, CO2 production and a corresponding increase in biomass. Monoterpene degradation in liquid cultures devoid of soil followed Monod kinetics. The maximum specific growth rate (μmax) was 0.02 h−1 and 0.06 h−1 and the half-velocity constant (Ks ) varied from 32 mg/l to 3 mg/l for the limonene and α-terpineol respectively. The recovery of monoterpenes by solvent extraction from autoclaved and azide-amended soil-slurry samples decreased over time and ranged from 69% to 73% for 120 h of incubation period. Although a significant fraction of monoterpene hydrocarbon could not be extracted, mineralization of these compounds in the soil-slurry systems took place, as shown by CO2 production. The soil-normalized degradation rates for the hydrocarbon monoterpenes ranged from 0.6 μg g−1 h−1 to 2.1 μg g−1 h−1. A kinetic model – which combined monoterpene biodegradation in the liquid phase and net desorption – was developed and applied to data obtained from soil-slurry assays.

Journal ArticleDOI
TL;DR: The characteristics of DSRS were found to be similar to the characteristics of the extracellular dextransucrase produced by L. mesenteroides NRRL B-512F, showing that DSRS has a two-domain structure like other glucosyltransferases.
Abstract: Dextransucrase (DSRS) from Leuconostoc mesenteroides NRRL B-512F is a glucosyltransferase that catalyzes the synthesis of soluble dextran from sucrose or oligosaccharides when acceptor molecules, like maltose, are present. The L. mesenteroides NRRL B-512F dextransucrase-encoding gene (dsrS) was amplified by the polymerase chain reaction and cloned in an overexpression plasmid. The characteristics of DSRS were found to be similar to the characteristics of the extracellular dextransucrase produced by L. mesenteroides NRRL B-512F. The enzyme also exhibited a high homology with other glucosyltransferases. In order to identify critical amino acid residues, the DSRS sequence was aligned with glucosyltransferase sequences and four amino acid residues were selected for site- directed mutagenesis experiments: aspartic acid 511, aspartic acid 513, aspartic acid 551 and histidine 661. Asp-511, Asp-513 and Asp-551 were independently replaced with asparagine and His-661 with arginine. Mutation at Asp-511 and Asp-551 completely suppressed dextran and oligosaccharide synthesis activities, showing that at least two carboxyl groups (Asp-511 and Asp-551) are essential for the catalysis process. However, glucan-binding properties were retained, showing that DSRS has a two-domain structure like other glucosyltransferases. Mutations at Asp-513 and His-661 resulted in greatly reduced dextransucrase activity. According to amino acid sequence alignments of glucosyltransferases, α-amylases or cyclodextrin glucanotransferases, His-661 may have a hydrogen-bonding function.

Journal ArticleDOI
K. Scheibner1, Martin Hofrichter1, A. Herre1, J. Michels1, Wolfgang Fritsche1 
TL;DR: Micromycetes proved to be unable to mineralize [14C]TNT significantly, and these strains metabolized TNT rapidly by forming monoaminodinitrotoluenes (AmDNT), which produced higher amounts of AmDNT than did wood- and litter-decaying basidiomycete.
Abstract: Within a screening program, 91 fungal strains belonging to 32 genera of different ecological and taxonomic groups (wood- and litter-decaying basidiomycetes, saprophytic micromycetes) were tested for their ability to metabolize and mineralize 2,4,6-trinitrotoluene (TNT). All these strains metabolized TNT rapidly by forming monoaminodinitrotoluenes (AmDNT). Micromycetes produced higher amounts of AmDNT than did wood- and litter-decaying basidiomycetes. A significant mineralization of [14C]TNT was only observed for certain wood- and litter-decaying basidiomycetes. The most active strains, Clitocybula dusenii TMb12 and Stropharia rugosa-annulata DSM11372 mineralized 42 % and 36 % respectively of the initial added [14C]TNT (100 μM corresponding to 4.75 μCi/l) to 14CO2 within 64 days. Micromycetes (deuteromycetes, ascomycetes, zygomycetes) proved to be unable to mineralize [14C]TNT significantly.