scispace - formally typeset
Search or ask a question

Showing papers in "Archives of Acoustics in 2016"


Journal ArticleDOI
TL;DR: It is hypothesised that case spaces with certain plan organisations, volumetric relations, and spatial referencing lead to differentiated sound pressure level (SPL) and loudness (N) values, and the relation between crowd level variances and sound environment parametric values is statistically significant.
Abstract: This study presents the indoor soundscape framework in detail by describing the variables and factors that form an indoor soundscape study. The main objective is to introduce a new indoor soundscaping framework and systematically explain the variables that contribute to the overall evaluation of an indoor soundscape. Hence, the dependencies of physical and psychoacoustical factors of the sound environment and the spatial factors of the built entity are statistically tested. The new indoor soundscaping framework leads to an overarching evaluation perspective of enclosed sound environments, combining objective room acoustics research and noise control engineering with architectural analysis. Therefore, it is hypothesised that case spaces with certain plan organisations, volumetric relations, and spatial referencing lead to differentiated sound pressure level (SPL) and loudness (N) values. SPL and N parametric variances of the sound environments are discussed through the statistical findings with respect to the architectural characteristics of each library case space. The results show that the relation between crowd level variances and sound environment parametric values is statistically significant. It is also found that increasing the atrium height and atrium void volume, the atrium’s presence as a common architectural element, and its interpenetrating reference and domain containment results in unwanted variances and acoustic formations, leading to high SPL and N values.

41 citations


Journal ArticleDOI
TL;DR: The proposed method of fault diagnostics can find application in protection of three-phase induction motors by measuring and analysing the states of motors caused by natural degradation of parts of the machine.
Abstract: A fault diagnostics system of three-phase induction motors was implemented. The implemented system was based on acoustic signals of three-phase induction motors. A feature extraction step was performed using SMOFS-20-EXPANDED (shortened method of frequencies selection-20-Expanded). A classification step was performed using 3 classifiers: LDA (Linear Discriminant Analysis), NBC (Naive Bayes Classifier), CT (Classification Tree). An analysis was carried out for incipient states of three-phase induction motors measured under laboratory conditions. The author measured and analysed the following states of motors: healthy motor, motor with one faulty rotor bar, motor with two faulty rotor bars, motor with faulty ring of squirrel-cage. Measured and analysed states were caused by natural degradation of parts of the machine. The efficiency of recognition of the analysed states was good. The proposed method of fault diagnostics can find application in protection of three-phase induction motors.

38 citations


Journal ArticleDOI
TL;DR: In this article, a model based on known laws of hydrodynamics of multiphase mediums of dust-extraction in Venturi scrubbers was proposed to increase the efficiency of gas cleaning equipment using high-intensity ultrasound.
Abstract: The article presents the results of research aimed at increase of the efficiency of gas cleaning equipment based on the Venturi tube using high-intensity ultrasound. The model based on known laws of hydrodynamics of multiphase mediums of dust-extraction in Venturi scrubbers was proposed. Modification of this model taking into account ultrasonic field allows evaluating optimum modes (sound pressure level) and conditions (direction of ultrasonic field, square and number of ultrasonic sources) of ultrasonic influence. It is evaluated that optimum for efficient gas cleaning is the mode of ultrasonic action at the frequency of 22 kHz with sound pressure level of 145...155 dB at the installation of two radiators with area of 0.14 m 2 , four radiators with area of 0.11 m 2 or six radiators with area of 0.08 m 2 at the angle of 45 degrees to the axis of Venturi tube. Numerical calculations showed that realization of ultrasonic action is the most efficient for the reduction (up to 15 times) of the content of fine-dispersed fraction (2 µm and less), which is impossible to extract without ultrasonic action. The received theoretical results were confirmed by industrial testing by typical dust-extraction plant and used as foundations of development of apparatuses with the radiators of various sizes.

28 citations


Journal ArticleDOI
TL;DR: The presented review contains an authored classification of various sonification schemes implemented in the most widely known ETAs, both commercially available and those in various stages of research, according to the input used, level of signal processing algorithm used and sonification methods.
Abstract: Sonification is defined as presentation of information by means of non-speech audio. In assistive technologies for the blind, sonification is most often used in electronic travel aids (ETAs) – devices which aid in independent mobility through obstacle detection or help in orientation and navigation. The presented review contains an authored classification of various sonification schemes implemented in the most widely known ETAs. The review covers both those commercially available and those in various stages of research, according to the input used, level of signal processing algorithm used and sonification methods. Additionally, a sonification approach developed in the Naviton project is presented. The prototype utilizes stereovision scene reconstruction, obstacle and surface segmentation and spatial HRTF filtered audio with discrete musical sounds and was successfully tested in a pilot study with blind volunteers in a controlled environment, allowing to localize and navigate around obstacles.

27 citations


Journal ArticleDOI
TL;DR: In this paper, a comparative analysis of acoustic emission method (AE) signals measurement results archived under laboratory conditions as well as on-site actual AE signals generated by inside PDs in electrical power transformer during its normal service is presented.
Abstract: An acoustic emission method (AE) is widespread and often applied for partial discharge (PD) diagnostics, mainly due to its ease of application as well as noninvasiveness and relatively high sensitivity. This paper presents comparative analysis of AE signals measurement results archived under laboratory conditions as well as on-site actual AE signals generated by inside PDs in electrical power transformer during its normal service. Three different PD model sources are applied for laboratory research: point to point, multipoint to plate and surface type. A typical measuring set up commonly used for on-site transformer PD diagnostics is provided for the laboratory tasks: piezoelectric joint transducer, preamplifier, amplifier and measuring PC interface. During the on-site research there are three measuring tracks applied simultaneously. Time domain, time-frequency domain and statistical tools are used for registered AE signals analysis. A number of descriptors are proposed as a result of the analysis. In the paper, attempt of AE signals descriptors, archived under laboratory condition application possibilities for on-site PD diagnostics of power transformers during normal service is made.

27 citations


Journal ArticleDOI
TL;DR: By measuring the sound pressure level for specific faults and comparing the noise generated by the motor running smoothly, the detailed maps of changes in the acoustic spectrum are possible to generate and may be helpful in the future diagnostics of internal combustion engines.
Abstract: The paper presents the possible applications of using acoustic diagnostics in inspecting the technical condition of an internal combustion engine with autoignition on the example of the Fiat drive unit with common rail system. As a result of measuring the sound pressure level for specific faults and comparing the noise generated by the motor running smoothly, the detailed maps of changes in the acoustic spectrum are possible to generate. These results may be helpful in the future diagnostics of internal combustion engines. In the paper, the results of scientific work in the area of research, design and operation of internal combustion engines, conducted at the Department of Automotive Engineering, in cooperation with the Laboratory of Hydraulic Drives & Vibroacoustics of Machines at the Wroclaw University of Technology are included.

22 citations


Journal ArticleDOI
TL;DR: The paper presents the research studies carried out on the reverberation time of rooms, in terms of theoretical aspects and applicability potentials, based on the Sabine's statistical method.
Abstract: The paper presents the research studies carried out on the reverberation time of rooms, in terms of theoretical aspects and applicability potentials. Over the last century a very large number of scientists have been attempting to work out models describing the reverberation time in enclosed rooms. They have also been trying to apply these models for the description of various acoustic parameters of the interior, i.e. the intelligibility of speech, clarity, articulation, etc. In fact, all these models are based on the Sabine’s statistical method. The paper presents the work of the scientists working on this problem, together with prospective applicability potentials. Such a review may be helpful for researchers, designers or architects involved in the discussed subject.

20 citations


Journal ArticleDOI
TL;DR: This study applies Deep Neural Networks for laughter detection, as this technology is nowadays considered state-of-the-art in similar tasks like phoneme identification.
Abstract: Laughter is one of the most important paralinguistic events, and it has specific roles in human conversation. The automatic detection of laughter occurrences in human speech can aid automatic speech recognition systems as well as some paralinguistic tasks such as emotion detection. In this study we apply Deep Neural Networks (DNN) for laughter detection, as this technology is nowadays considered state-of-the-art in similar tasks like phoneme identification. We carry out our experiments using two corpora containing spontaneous speech in two languages (Hungarian and English). Also, as we find it reasonable that not all frequency regions are required for efficient laughter detection, we will perform feature selection to find the sufficient feature subset.

18 citations


Journal ArticleDOI
TL;DR: In this paper, the properties of AE signals originating from phenomena occurring during magnetization of ferromagnetic materials which are used to construct power transformer cores were recorded and analyzed, i.e., time, frequency, and time-frequency analyses, calculations of amplitude distributions of the signals and defined AE descriptors, determination of the descriptor map on the side walls of transformers, as well as a detailed analysis of selected part of signals.
Abstract: In this paper, the properties of AE signals originating from phenomena occurring during magnetization of ferromagnetic materials which are used to construct power transformer cores are presented. The AE signals in a selected power oil transformer were recorded and analyzed. The analysis included, i.e., time, frequency, and time-frequency analyses, calculations of amplitude distributions of the signals and defined AE descriptors, determination of the descriptor map on the side walls of transformers, as well as a detailed analysis of selected part of the signals. The maps of descriptors were analyzed in the frequency bands of 20–70 kHz, 70–100 kHz, and 100–200 kHz. The analysis of the properties of the signals was performed in time and frequency domains. Based on the analysis, there were identified the AE signals originating from the phenomena occurring during the core magnetization of a power oil transformer. To identify those phenomena, the maps of the ADC descriptor calculated in the band of 20–70 kHz when selecting the measurement points in which there were no AE sources from partial discharges were used. An analysis of magnetoacoustic emission signals in the bands of 70–100 kHz and 100–200 kHz was also performed. The analysis of the signal properties in such an extended frequency range allowed determining the properties of the magnetoacoustic signals coming from core sheets of power oil transformers.

17 citations


Journal ArticleDOI
TL;DR: Control theoretic analysis confirmed by simulations that for the leaky LMS algorithm, a small negative step size is allowed and the control theoretic approach alows to minimize the number of assumptions necessary to prove the new condition.
Abstract: The Least Mean Squares (LMS) algorithm and its variants are currently the most frequently used adaptation algorithms; therefore, it is desirable to understand them thoroughly from both theoretical and practical points of view. One of the main aspects studied in the literature is the influence of the step size on stability or convergence of LMS-based algorithms. Different publications provide different stability upper bounds, but a lower bound is always set to zero. However, they are mostly based on statistical analysis. In this paper we show by means of control theoretic analysis confirmed by simulations that for the leaky LMS algorithm, a small negative step size is allowed. Moreover, the control theoretic approach alows to minimize the number of assumptions necessary to prove the new condition. Thus, although a positive step size is fully justified for practical applications since it reduces the mean-square error, knowledge about an allowed small negative step size is important from a cognitive point of view, and can be used on purpose in sophisticated tuning scenarios, e.g., in multiband processing.

15 citations


Journal ArticleDOI
TL;DR: Comparisons between numerical and experimental results confirmed the potentiality of a numerical-experimental integrated approach in offering a good compromise between noise prediction accuracy and reduction of experimental and modelling requirements.
Abstract: This paper describes the development phases of a numerical-experimental integrated approach aimed at obtaining sufficiently accurate predictions of the noise field emitted by an external gear pump by means of some vibration measurements on its external casing. Harmonic response methods and vibroacoustic analyses were considered as the main tools of this methodology. FFT acceleration spectra were experimentally acquired only in some positions of a 8.5 cc/rev external gear pump casing for some working conditions and considered as external excitation boundary conditions for a FE quite simplified vibroacoustic model. The emitted noise field was computed considering the pump as a ‘black box’, without taking into account the complex dynamics of the gear tooth meshing process and the consequent fluid pressure and load distribution. Sound power tests, based on sound intensity measurements, as well as sound pressure measurements in some positions around the pump casing were performed for validation purposes. The comparisons between numerical and experimental results confirmed the potentiality of this approach in offering a good compromise between noise prediction accuracy and reduction of experimental and modelling requirements.

Journal ArticleDOI
TL;DR: In this article, the nonlinearity parameter B/A, internal pressure, and acoustic impedance for a room temperature ionic liquid, i.e. for 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide for temperatures from (288.15 to 318.15) K and pressures up to 100
Abstract: The nonlinearity parameter B/A , internal pressure, and acoustic impedance are calculated for a room temperature ionic liquid, i.e. for 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide for temperatures from (288.15 to 318.15) K and pressures up to 100 MPa. The B/A calculations are made by means of a thermodynamic method. The decrease of B/A values with the increasing pressure is observed. At the same time B/A is temperature independent in the range studied. The results are compared with corresponding data for organic molecular liquids. The isotherms of internal pressure cross at pressure in the vicinity of 70 MPa, i.e. in this range the internal pressure is temperature independent.

Journal ArticleDOI
TL;DR: The whole procedure of decision method based on game graphs is described, as well as the interface of the program for direct usage, for identifying technical condition (type of failure) of specified combustion engine.
Abstract: The paper is a continuation of the publication under the title “Acoustic diagnostics applications in the study of technical condition of combustion engine” and concerns the detailed description of decision support system for identifying technical condition (type of failure) of specified combustion engine The input data were measured sound pressure levels of specific faults in comparison to the noise generated by undamaged motor In the article, the whole procedure of decision method based on game graphs is described, as well as the interface of the program for direct usage

Journal ArticleDOI
TL;DR: In this article, the authors present details of the design of the engineered 3D intensity probe, as well as the algorithms developed and applied for that purpose, along with results of the intensity probe measurements along with the calibration procedure.
Abstract: The aim of this paper is two-fold. First, some basic notions on acoustic field intensity and its measurement are shortly recalled. Then, the equipment and the measurement procedure used in the sound intensity in the performed research study are described. The second goal is to present details of the design of the engineered 3D intensity probe, as well as the algorithms developed and applied for that purpose. Results of the intensity probe measurements along with the calibration procedure are then contained and discussed. Comparison between the engineered and the reference commercial probe confirms that the designed construction is applicable to the sound field intensity measurements with a sufficient effectiveness.

Journal ArticleDOI
TL;DR: A light-weight casing is investigated, where vibrational couplings between walls are much greater due to lack of a rigid frame, and adaptive control strategy based on the Least Mean Square algorithm is used to update control filter parameters.
Abstract: It is possible to enhance acoustic isolation of the device from the environment by appropriately controlling vibration of a device casing. Sound insulation efficiency of this technique for a rigid casing was confirmed by the authors in previous publications. In this paper, a light-weight casing is investigated, where vibrational couplings between walls are much greater due to lack of a rigid frame. A laboratory setup is described in details. The influence of the cross-paths on successful global noise reduction is considered. Multiple vibration actuators are installed on each of the casing walls. An adaptive control strategy based on the Least Mean Square (LMS) algorithm is used to update control filter parameters. Obtained results are reported, discussed, and conclusions for future research are drawn.

Journal ArticleDOI
TL;DR: In this paper, a simple and reliable method for assessing low frequency noise in occupational environment to prevent its effects on work performance for the workers is presented, where two measurement techniques using C-weighting along side the A-weighted scale are explored.
Abstract: Low frequency noise is one of the most harmful factors occurring in human working and living environment. Low frequency noise components from 20 to 250 Hz are often the cause of employee complaints. Noise from power stations is an actual problem for large cities, including Cairo. The noise from equipments of station could be a serious problem for station and for environmental area. The development of power stations in Cairo leads to appearing a wide range of gas turbines which are strong source of noise. Two measurement techniques using C-weighted along side the A-weighted scale are explored. C-weighting is far more sensitive to detect low frequency sound. Spectrum analysis in the low frequency range is done in order to identify a significant tonal component. Field studies were supported by a questionnaire to determine whether sociological or other factors might influence the results by using annoyance rating mean value. Subjects included in the study were 153 (mean = 36.86, SD = 8.49) male employees at the three electrical power stations. The (C-A) level difference is an appropriate metric for indicating a potential low frequency noise problem. A-weighting characteristics seem to be able to predict quite accurately annoyance experienced from LFN at workplaces. The aim of the present study is to find simple and reliable method for assessing low frequency noise in occupational environment to prevent its effects on work performance for the workers. The proposed method has to be compared with European methods.

Journal ArticleDOI
TL;DR: The active noise-reducing casing developed and promoted by the authors in recent publications has multiple advantages over other active noise control methods, and is further explored and applied for a light-weight casing, where each vibrating wall of the casing influences all the other walls.
Abstract: The active noise-reducing casing developed and promoted by the authors in recent publications have multiple advantages over other active noise control methods. When compared to classical solutions, it allows for obtaining global reduction of noise generated by a device enclosed in the casing. Moreover, the system does not require loudspeakers, and much smaller actuators attached to the casing walls are used instead. In turn, when compared to passive casings, the walls can be made thinner, lighter and with much better thermal transfer than sound-absorbing materials. For active noise control a feedforward structure is usually used. However, it requires an in-advance reference signal, which can be difficult to be acquired for some applications. Fortunately, usually the dominant noise components are due to rotational operations of the enclosed device parts, and thus they are tonal and multitonal. Therefore, it can be adequately predicted and the Internal Model Control structure can be used to benefit from algorithms well developed for feedforward systems. The authors have already tested that approach for a rigid casing, where interaction of the walls was significantly reduced. In this paper the idea is further explored and applied for a light-weight casing, more frequently met in practice, where each vibrating wall of the casing influences all the other walls. The system is verified in laboratory experiments.

Journal ArticleDOI
TL;DR: The aim of this continuation is to prove that a proposed way of modelling and using the coherent analysis to filter nonlinear disturbances is a useful technique in vibroacoustic diagnostics.
Abstract: The article is a continuation of the authors' elaboration (Dąbrowski, Dziurdź, 2016). The aim of this continuation is to prove that a proposed way of modelling and using the coherent analysis to filter nonlinear disturbances is a useful technique in vibroacoustic diagnostics. The thesis was proved by solving the task of diagnosing the damage of the gear of the car gearbox on the basis of the measurement of mechanical vibrations and the noise in the engine chamber.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the manner of propagation of mechanical crosstalk in the designed model of a linear array of ultrasonic transducers on the basis of unwanted signals, which appeared on elementary piezoelectric transducers when power is supplied to the selected transducer in the array.
Abstract: Linear arrays of ultrasonic transducers are commonly used as ultrasonic probes in medical diagnostics for imaging the interior of a human body in vivo . The crosstalk phenomenon occurs during the operation of transducers in which electrical voltages and mechanical vibrations are transmitted to adjacent components. As a result of such additional excitation of the transducers in the array, the directivity characteristics of the aperture used changes, and consequently there is interference with proper operation of a given array and the emergence of distortions in the obtained ultrasound image that reduce its quality. This paper studies the manner of propagation of mechanical crosstalk in the designed model of a linear array of ultrasonic transducers on the basis of unwanted signals, which appeared on elementary piezoelectric transducers when power is supplied to the selected transducer in the array. The universal model of linear array of ultrasonic transducers, which has been developed, allowed the simulation of mechanical crosstalk, taking into account the cross-coupling phenomenon in all of its structure with the use of finite elements method (FEM) implemented in COMSOL Multiphysics software. The analysis of crosstalk signals showed that they consist of aggregated pulses propagating with different speeds and frequencies. This signifies the formation of different vibration modes transmitted simultaneously via different paths. The paper is an original approach which enables to identify different vibration modes and estimate their participation in the crosstalk signal and their ways of propagation. Conclusions from the research allow predicting specific design changes which are significant due to the minimization of mechanical crosstalk in linear arrays of ultrasonic transducers.

Journal ArticleDOI
TL;DR: Experimental results show that the proposed joint low-rank and sparse matrix decomposition (JLSMD) based subspace method performs better than conventional methods in many types of strong noise conditions, in terms of yielding less residual noise and lower speech distortion.
Abstract: Subspace-based methods have been effectively used to estimate enhanced speech from noisy speech samples. In the traditional subspace approaches, a critical step is splitting of two invariant subspaces associated with signal and noise via subspace decomposition, which is often performed by singular-value decomposition or eigenvalue decomposition. However, these decomposition algorithms are highly sensitive to the presence of large corruptions, resulting in a large amount of residual noise within enhanced speech in low signal-to-noise ratio (SNR) situations. In this paper, a joint low-rank and sparse matrix decomposition (JLSMD) based subspace method is proposed for speech enhancement. In the proposed method, we firstly structure the corrupted data as a Toeplitz matrix and estimate its effective rank value for the underlying clean speech matrix. Then the subspace decomposition is performed by means of JLSMD, where the decomposed low-rank part corresponds to enhanced speech and the sparse part corresponds to noise signal, respectively. An extensive set of experiments have been carried out for both of white Gaussian noise and real-world noise. Experimental results show that the proposed method performs better than conventional methods in many types of strong noise conditions, in terms of yielding less residual noise and lower speech distortion.

Journal ArticleDOI
TL;DR: In this article, a roughness model composed of two successive stages is presented, i.e., peripheral and central, which predicts roughness from the temporal envelope of the signal processed by the peripheral stage.
Abstract: The term roughness is used to describe a specific sound sensation which may occur when listening to stimuli with more than one spectral component within the same critical band. It is believed that the spectral components interact inside the cochlea, which leads to fluctuations in the neural signal and, in turn, to a sensation of roughness. This study presents a roughness model composed of two successive stages: peripheral and central. The peripheral stage models the function of the peripheral ear. The central stage predicts roughness from the temporal envelope of the signal processed by the peripheral stage. The roughness model was shown to account for the perceived roughness of various types of acoustic stimuli, including the stimuli with temporal envelopes that are not sinusoidal. It thus accounted for effects of the phase and the shape of the temporal envelope on roughness. The model performance was poor for unmodulated bandpass noise stimuli.

Journal ArticleDOI
TL;DR: In this paper, a hybridization of MFCC and Higher Order Spectral (HOS) based features have been used in the task of musical instrument classification, which has shown significant improvement in the classification accuracy of the system.
Abstract: This paper presents the classification of musical instruments using Mel Frequency Cepstral Coefficients (MFCC) and Higher Order Spectral features. MFCC, cepstral, temporal, spectral, and timbral features have been widely used in the task of musical instrument classification. As music sound signal is generated using non-linear dynamics, non-linearity and non-Gaussianity of the musical instruments are important features which have not been considered in the past. In this paper, hybridisation of MFCC and Higher Order Spectral (HOS) based features have been used in the task of musical instrument classification. HOS-based features have been used to provide instrument specific information such as non-Gaussianity and non-linearity of the musical instruments. The extracted features have been presented to Counter Propagation Neural Network (CPNN) to identify the instruments and their family. For experimentation, isolated sounds of 19 musical instruments have been used from McGill University Master Sample (MUMS) sound database. The proposed features show the significant improvement in the classification accuracy of the system.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the relationship between subjective word identification and sentence intelligibility scores and speech transmission index (STI) in the classrooms of three primary school under different signal-to-noise ratios (SNRs).
Abstract: The Chinese word identification and sentence intelligibility are evaluated by grades 3 and 5 students in the classrooms with different reverberation times (RTs) from three primary school under different signal-to-noise ratios (SNRs). The relationships between subjective word identification and sentence intelligibility scores and speech transmission index (STI) are analyzed. The results show that both Chinese word identification and sentence intelligibility scores for grades 3 and 5 students in the classroom increased with the increase of SNR (and STI), increased with the increase of the age of students, and decreased with the increase of RT. To achieve a 99% sentence intelligibility score, the STIs required for grades 3, grade 5 students, and adults are 0.71, 0.61, and 0.51, respectively. The required objective acoustical index determined by a certain threshold of the word identification test might be underestimated for younger children (grade 3 students) in classroom but overestimated for adults. A method based on the sentence test is more useful for speech intelligibility evaluation in classrooms than that based on the word test for different age groups. Younger children need more favorable classroom acoustical environment with a higher STI than older children and adults to achieve the optimum speech communication in the classroom.

Journal ArticleDOI
TL;DR: The paper presents a proposal to standardize the methodology of the estimation of vibration isolation materials physical parameters authorized for use in vibration isolation systems used in rail transport, which enables the creation of a unified database of elastic materials which parameters will be easy to compare, and choice between them will become easier for designers of vibration isolating systems used for rail transport.
Abstract: The technical requirements for the determination of physical parameters of vibration isolating material have not been standardized in Europe and Poland yet, which significantly hinders the ability to compare vibration isolating materials offered on the market. Therefore, there is a need for establishing a norm that could be applied both for the determination of the physico-mechanical properties of elastic vibration isolation elements in rail transport for domestic and foreign producers as well as in their selection for application in a specific vibration isolation system. The paper presents a proposal to standardize the methodology of the estimation of vibration isolation materials physical parameters authorized for use in vibration isolation systems used in rail transport. Methodology for measuring the physico-mechanical parameters of vibration isolating material presented in the paper forms uniform test procedure developed based on a fragmentary norms for flexible materials testing. The use of the proposed research methodology enables the creation of a unified database of elastic materials which parameters will be easy to compare, and choice between them will become easier for designers of vibration isolation systems used in rail transport.

Journal ArticleDOI
TL;DR: In this paper, the effects of low-frequency noise sources on human health, comfort and driving safety in prolonged exposure to the source have been investigated and some measures which may contribute to the reduction of undesirable vibroacoustic energy in enclosed areas.
Abstract: Transmission of vibroacoustic energy from an internal combustion engine (ICE) to its surroundings largely depends on how it is mounted, on available transmission paths and on the construction of the vehicle body and/or its surrounding structures. This is especially true in low speed engines in enclosed areas which generate perceptually weak noise, but strong low-frequency waves which energy has a negative impact on human health, comfort and driving safety especially in prolonged exposure to the source. The primary aim of the article was to analyse components of the ICE unit which had a determining impact on the reduction of low-frequency waves. Thus, the structurally transmitted noise from the ICE to its surrounding structure (body of the passenger vehicle) was analysed. The results of the vibroacoustic measurements were compared to modal analysis in order to determine possible resonance sources in the vehicle body and/or for assessing the influence of the vehicles safety gear on the generated vibroacoustic energy transfer into the cabin area of the passenger vehicle. Measurements were made for a passenger vehicle at rest and operating in its most common operational speed as well as for the stationary ICE of a cogenerate unit (CGU). Measurements and FFT analysis were used for the detection of the vibroacoustic energy sound pressure level (noise) and mechanical vibration. Firstly, the low-frequency noise sources were determined and their direct effects on the human body were investigated. Finally, this paper suggests some measures which may contribute to the reduction of undesirable vibroacoustic energy in enclosed areas.

Journal ArticleDOI
TL;DR: In this paper, a listening experiment involving 21 participants with normal hearing was conducted to examine how the modulation rate and the modulation depth influence the noise annoyance assessment of broadband and narrowband amplitude modulated noises.
Abstract: Annoyance ratings for artificially created noises, resembling the main characteristics of temporal wind turbine noise, were studied by means of a listening experiment involving 21 participants with normal hearing. Three types of stimuli were examined: broadband noise (−4 dB/octave), noise generated by moving cars, and narrowband noise. All stimuli had the sound level fluctuations typical for wind turbine noise. The magnitude of the sound level fluctuations was measured in a quantitative way, by using the characteristics of amplitude modulated sound: modulation rate and modulation depth. Our aim was to examine how the modulation rate and the modulation depth influence the noise annoyance assessment of broadband and narrowband amplitude modulated noises. Three different modulation rates, 1, 2 and 4 Hz, and sound level fluctuations (a measure of the modulation depth), 3, 6, 9 dB, were applied to each type of stimuli (with exception of noise generated by the moving cars) and investigated. The participants in the listening experiment were presented with sound stimuli in laboratory conditions and asked to rate their annoyance on a numerical scale. The results have shown a significant difference between the investigated conditions. The effect was particularly strong between the annoyance judgments of different types of noise (narrow and broadband), and modulated versus unmodulated noises. Temporal fluctuations occurring in wind turbine noise are very pertinent to the perception of annoyance and could be responsible for its being a relatively annoying noise source. The obtained results were discussed and compared to the typical modulation rates and level changes that occur in recordings of real wind turbine noise.

Journal ArticleDOI
TL;DR: In this article, the authors derive the equations that govern nonlinear excitation of the non-wave motions by the intense sound in initially static gaseous plasma, where the plasma is treated as an ideal gas with finite electrical conductivity permeated by a magnetic field orthogonal to the trajectories of gas particles.
Abstract: Nonlinear phenomena of the planar and quasi-planar magnetoacoustic waves are considered. We focus on deriving of equations which govern nonlinear excitation of the non-wave motions by the intense sound in initially static gaseous plasma. The plasma is treated as an ideal gas with finite electrical conductivity permeated by a magnetic field orthogonal to the trajectories of gas particles. This introduces dispersion of a flow. Magnetoacoustic heating and streaming in the field of periodic and aperiodic magnetoacoustic perturbations are discussed, as well as generation of the magnetic perturbations by sound. Two cases, corresponding to magnetosound perturbations of low and high frequencies, are considered in detail.

Journal ArticleDOI
TL;DR: In this article, the authors present the results of research of infrasound noise connected not only with wind farms, but also with daily human activity such as housework, travel to the office or shop, and during shopping.
Abstract: Infrasounds are very common in the natural environment. There are various opinions about their harmfulness or lack of harmfulness. One of the reasons of increasing interest in this issue is that there are more and more wind farms appearing close to building estates which are undoubtedly a source of infrasound. It is reasonable to present the results of research of infrasound noise connected not only with wind farms. In this study own results of research of infrasound noise related to daily human activity are presented. The measurements were carried out during housework, travel to the office or shop, and during shopping. The results are shown in the form of values of equivalent levels and 1/3-octave analyses. Taking into consideration the natural sources of infrasound in the environment, the measurements were conducted during both windy and windless weather. On the basis of the results of the measurements it was possible to define the daily exposure to infrasound noise. Those results were also compared with the available in the literature threshold values sensed by people. Estimated level of exposure to noise beyond workplace together with the level of exposure to noise at work enables to define daily exposure level, which means a better assessment of risk of health loss. Increasing social awareness of acoustic threat in everyday life allows us to identify the problem and at the same time improve the quality of rest and efficiency at work.

Journal ArticleDOI
TL;DR: A new two-dimensional (2D) Teager energy operators (TEOs) improved SPP estimator for speech enhancement in time-frequency (T-F) domain is proposed and suggests that the proposed method achieves a significant enhancement on perceptual quality, compared with four conventional speech enhancement algorithms.
Abstract: Although various speech enhancement techniques have been developed for different applications, existing methods are limited in noisy environments with high ambient noise levels. Speech presence probability (SPP) estimation is a speech enhancement technique to reduce speech distortions, especially for low signal-to-noise ratios (SNRs) scenario. In this paper, we propose a new two-dimensional (2D) Teager energy operators (TEOs) improved SPP estimator for speech enhancement in time-frequency (T-F) domain. Wavelet packet transform (WPT) as a multiband decomposition technique is used to concentrate the energy distribution of speech components. A minimum mean-square error (MMSE) estimator is obtained based on the generalized gamma distribution speech model in WPT domain. In addition, the speech samples corrupted by environment and occupational noise (i.e., machine shop, factory and station) at different input SNRs are used to validate the proposed algorithm. Results suggest that the proposed method achieves a significant enhancement on perceptual quality, compared with four conventional speech enhancement algorithms (i.e., MMSE-84, MMSE-04, Wiener-96, and BTW).

Journal ArticleDOI
TL;DR: In this paper, a uniform index method for assessing the acoustic quality of Roman Catholic churches has been developed using the index observation matrix of 12 churches which have been rated by means of the single number global index.
Abstract: In parallel with research conducted using conventional methods, a uniform index method for assessing the acoustic quality of Roman Catholic churches has been developed. The latest version of the index method has been created using the index observation matrix of 12 churches which have been rated by means of the single number global index. Assessments of the acoustic quality of any Roman Catholic church, using two calculation models: the Global Acoustic Properties Index (GAP) and the Global Index (GI), are shown in the article. The verification was performed on the example of one church, showing the way of calculating global indices to assess the acoustic quality of a new facility. The next stages in the development of the index method for assessing the acoustic quality of churches were taking into account the audience, using simulation tests and determining the spatial distribution of the single number GAP index in an examined church. An attempt to use the GAP and GI calculation models to assess the acoustic properties of some churches is also shown in the article.