scispace - formally typeset
Search or ask a question

Showing papers in "Archives of Microbiology in 1990"


Journal ArticleDOI
TL;DR: 16S rRNA sequence analysis indicates the organism is a new genus of sulfate-reducing bacteria in the delta subdivision of the class Proteobacteria, and it is proposed that the strain be named Desulfomonile tiedjei.
Abstract: An anaerobic, dehalogenating, sulfate-reducing bacterium, strain DCB-1, is described and nutritionally characterized. The bacterium is a Gram-negative, nonmotile, non-sporeforming large rod with an unusual morphological feature which resembles a collar. The microorganism reductively dehalogenates meta substituted halobenzoates and also reduces sulfate, sulfite and thiosulfate as electron acceptors. The bacterium requires nicotinamide, 1,4-naphthoquinone and thiamine for optimal growth in a defined medium. The microorganism can grow autotrophically on H2:CO2 with sulfate or thiosulfate as terminal electron acceptors. It can also grow heterotrophically with pyruvate, several methoxybenzoates, formate plus sulfate or benzoate plus sulfate. It ferments pyruvate to acetate and lactate in the absence of other electron acceptors. The bacterium is inhibited by MoOinf4sup2-or SeOinf4sup2-as well as tetracycline, chloramphenicol, kanamycin or streptomycin. Cytochrome c3 and desulfoviridin have been purified from cells grown in defined medium. 16S rRNA sequence analysis indicates the organism is a new genus of sulfate-reducing bacteria in the delta subdivision of the class Proteobacteria. We propose that the strain be named Desulfomonile tiedjei.

303 citations


Journal ArticleDOI
TL;DR: A new species is described, Thermococcus litoralis, which is different from the type species Thermitis celer in molecular, morphological and physiological characteristics.
Abstract: We describe a new species, Thermococcus litoralis, which is different from the type species Thermococcus celer in molecular, morphological and physiological characteristics.

211 citations


Journal ArticleDOI
TL;DR: In this article, the Gibbs free energy of H2 oxidation was corrected for temperature by both the free-energy form of the Nernst equation and the Van't Hoff equation, and the difference between the observed and the calculated H2 partial pressures gave the minimum energy required for H2 utilization being about-5 to 6 kJ/mol H2 for the homoacetogenes and-9 to 12 kJ /mol H 2 for methanogens.
Abstract: Hydrogen consumption by various thermophilic, mesophilic and/or psychrotrophic homoacetogens and methanogens was measured at temperatures between 4 and 80°C. Within the tolerated temperature range H2 was consumed until a final H2 threshold partial pressure was reached. H2 thresholds generally decreased with temperature, parallel to the values calculated from the thermodynamics prevailing under culture conditions, i.e. the Gibbs free energy (ΔG) of H2 oxidation corrected for temperature by both the free-energy form of the Nernst equation and the Van't Hoff equation. The difference between the observed and the calculated H2 partial pressures gives the minimum energy required for H2 utilization being about-5 to-6 kJ/mol H2 for the homoacetogenes and-9 to-12 kJ/mol H2 for methanogens. The temperature dependence of the standard Gibbs free energy (ΔG0) as described by the Van't Hoff equation apparently became the more important for thermodynamics as well as H2 thresholds the more the temperature deviated from standard conditions (i.e. 25°C). Correction factors for calculation of temperature-corrected ΔG infT sup0 are presented for various H2-producing and H2-consuming reactions.

209 citations


Journal ArticleDOI
TL;DR: A bacterium tentatively identified as a Pseudomonas sp.
Abstract: A bacterium tentatively identified as a Pseudomonas sp. was isolated from a laboratory aquifer column in which toluene was degraded under denitrifying conditions. The organism mineralized toluene in pure culture in the absence of molecular oxygen. In carbon balance studies using [ring-UL-14C]toluene, more than 50% of the radioactivity was recovered as 14CO2. Nitrate and nitrous oxide served as electron acceptors for toluene mineralization. The organism was also able to degrade m-xylene, benzoate, benzaldehyde, p-cresol, p-hydroxy-benzaldehyde, p-hydroxybenzoate and cyclohexanecarboxylic acid in the absence of molecular oxygen.

182 citations


Journal ArticleDOI
TL;DR: In this article, a pure culture of a Brevibacterium species was isolated, which is able to use dibenzothiophene as sole source of carbon, sulfur and energy for growth.
Abstract: Dibenzothiophene, a polycyclic aromatic sulfur heterocycle, represents as a model compound the organic sulfur integrated in the macromolecular coal matrix. A pure culture of a Brevibacterium species was isolated, which is able to use dibenzothiophene as sole source of carbon, sulfur and energy for growth. During dibenzothiophene utilization sulfite was released in a stoichiometrical amount and was further oxidized to sulfate. Three metabolites of dibenzothiophene degradation were isolated and identified as dibenzothiophene-5-oxide, dibenzothiophene-5-dioxide and benzoate by cochromatography, UV spectroscopy and gas chromatographymass spectrometry analyses. Based on the identified metabolites a pathway for the degradation of dibenzothiophene by Brevibacterium sp. DO is proposed.

152 citations


Journal ArticleDOI
TL;DR: In this article, Nitrosomonas europaea and Nitrosovibrio sp. produced NO and N2O during nitrification of ammonium, but not of nitrite.
Abstract: Nitrosomonas europaea and Nitrosovibrio sp. produced NO and N2O during nitrification of ammonium. Less then 15% of the produced NO was due to chemical decomposition of nitrite. Production of NO and especially of N2O increased when the bacteria were incubated under anaerobic conditions at decreasing flow rates of air, or at increasing cell densities. Low concentrations of chlorite (10 μM) inhibited the production of NO and N2, but not of nitrite indicating that NO and N2O were not produced during the oxidative conversion of ammonium to nitrite. NO and N2O were produced during reduction of nitrite with hydrazine as electron donor in almost stoichiometric quantities indicating that reduction of nitrite was the main source of NO and N2O.

150 citations


Journal ArticleDOI
TL;DR: Data indicate that the reductive dehalogenation of chlorinated aromatic compounds can be coupled to a novel type of chemotrophy.
Abstract: Thermodynamic data that the reductive dechlorination of 3-chlorobenzoate is exergonic have led to the hypothesis that this reaction yields biologically useful energy. This hypothesis was tested with strain DCB-1, a dehalogenating bacterium. The organism was grown under strictly anaerobic conditions in vitamin-amended mineral medium with formate plus acetate as electron donor and 3-chlorobenzoate as electron acceptor. The cell yield increased stoichiometrically to the amount of 3-chlorobenzoate dechlorinated. No growth was observed in the absence of 3-chlorobenzoate, or when 3-chlorobenzoate was replaced by benzoate. To obtain further evidence on that energy is derived from dechlorination, 3-chlorobenzoate was added to starved cells. This amendment resulted in an increase in the ATP level of the cells at 10 nmol per mg protein versus 3 nmol per mg protein in non-amended controls. These data indicate that the reductive dehalogenation of chlorinated aromatic compounds can be coupled to a novel type of chemotrophy.

149 citations


Journal ArticleDOI
TL;DR: Data indicate that the Nir pathway provides a mechanism for detoxifying nitrite formed in the cytoplasm as a product of nitrate reduction, which provides a secondary source of energy during anaerobic growth and is consequently repressed by the NarL protein when the thermodynamically more favourable electron acceptor, nitrate, is available.
Abstract: Operon fusion strains and mutants of Escherichia coli K-12 lacking the NADH-dependent nitrite reductase have been used to determine the regulation and physiological roles of two independent pathways for nitrite reduction to ammonia. Both the formate- and NADH-dependent pathways (Nrf and Nir, respectively) were totally repressed during aerobic growth, partially active during anaerobic growth in the absence of nitrite and further induced anaerobically by nitrite. Both were dependent upon a functional Fnr protein (a transcription activator of genes for anaerobic respiration). During anaerobic growth in the presence of nitrate, the Nir pathway was fully induced but Nrf was strongly repressed. Mutants defective in the NarL protein, which induces transcription of nitrate reductase genes but represses fumarate reductase genes in the presence of nitrate, were derepressed for Nrf activity during growth with nitrate, but the Nir enzyme was less active. The synthesis of Nrf components was also sensitive to glucose repression and weak activation by NarL during growth in the absence of nitrate. These data indicate that the Nir pathway provides a mechanism for detoxifying nitrite formed in the cytoplasm as a product of nitrate reduction. In contrast, the electrogenic reduction of nitrite by the Nrf pathway provides a secondary source of energy during anaerobic growth and is consequently repressed by the NarL protein when the thermodynamically more favourable electron acceptor, nitrate, is available. Two short DNA sequences, 5'-TACCAT-3' and 5'-CTCCTT-3', were found in the promoters of operons known to be activated or repressed by the NarL protein.(ABSTRACT TRUNCATED AT 250 WORDS)

129 citations


Journal ArticleDOI
TL;DR: The halophilic phototrophic bacterium Ectothiorhodospira halochloris is able to synthesize both nitrogen-containing (betaine, ectoine) and nitrogen-free (trehalose) compatible solutes but the betaine pool cannot be used as a nitrogen source, not even in a situation of total nitrogen depletion.
Abstract: The halophilic phototrophic bacterium Ectothiorhodospira halochloris is able to synthesize both nitrogen-containing (betaine, ectoine) and nitrogen-free (trehalose) compatible solutes. In the absence of external ammonium and under nitrogen-limited growth conditions ectoine was metabolized and trehalose partly replaced betaine. The cytoplasmic trehalose concentration did not exceeded 0.5 mol/kg water (approx. 30% of total compatible solutes). A decreasing content of betaine in cells growing under nitrogen limitation is a result of decreased biosynthesis. Apparently, the betaine pool cannot be used as a nitrogen source, not even in a situation of total nitrogen depletion.

127 citations


Journal ArticleDOI
TL;DR: Although the results generally demonstrate a similarity to S. solfataricus, DNA-DNA hybridisation and 16S rRNA sequence data indicate that isolate B12 in fact represents a distinct species.
Abstract: The Sulfolobus isolate B12 and its endogenous virus-like element SSV1 have provided a fruitful system for detailed analysis of certain aspects of archaebacterial molecular biology, especially those concerning gene expression. In the course of clarifying this isolate's taxonomic position, we determined DNA base composition, ability to grow autotrophically, nucleotide sequence of 16S ribosomal RNA, and level of total genomic homology to other Sulfolobus strains. Although the results generally demonstrate a similarity to S. solfataricus, DNA-DNA hybridisation and 16S rRNA sequence data indicate that isolate B12 in fact represents a distinct species.

126 citations


Journal ArticleDOI
TL;DR: Results indicate that DCB-1 conserves energy for growth by coupling formate, and probably, H2 oxidation to reductive dechlorination.
Abstract: Strain DCB-1 is a strict anaerobe capable of the reductive dechlorination of chlorobenzoates. The effect of dechlorination on the yield of pure cultures of DCB-1 was tested. Cultures were incubated with formate or H2 as electron donors and CO2 as a putative carbon source. Relative to control cultures with benzoate, cultures which dechlorinated 3-chlorobenzoate and 3,5-dichlorobenzoate had higher yields measured both as protein and cell density. On the media tested the apparent growth yield was 1.7 to 3.4 g cell protein per mole Cl- removed. Dechlorination also stimulated formate oxidation by growing cultures. Resuspended cells required an electron donor for dechlorination activity, with either formate or elemental iron serving this function. Resuspended cells did not require an electron acceptor for formate consumption, but reductive dechlorination of 3CB to benzoate stoichiometrically stimulated oxidation of formate to CO2. These results indicate that DCB-1 conserves energy for growth by coupling formate, and probably, H2 oxidation to reductive dechlorination.

Journal ArticleDOI
TL;DR: The results indicate that ericoid mycorrhizal fungi are more effective in degrading lignin than ectomycorrhiza forms along a gradient of increasing organic matter and hence lign in content of soil.
Abstract: The ability of ericoid and ectomycorrhizal fungi to utilize 14C-labelled lignin and O14CH3-labelled dehydropolymer of coniferyl alcohol as sole C sources has been assessed in pure culture studies. The results indicate that ericoid mycorrhizal fungi are more effective in degrading lignin than ectomycorrhizal fungi. Amongst the ectomycorrhizal fungi the facultative mycorrhizal fungus Paxillus involutus degraded lignin more readily than those which are normally considered to be obligately mycorrhizal fungi such as Suillus bovinus and Rhizopogon roseolus. The importance of these lignin degrading capabilities is discussed in relation to the predominance of specific mycorrhiza forms along a gradient of increasing organic matter and hence lignin content of soil.

Journal ArticleDOI
TL;DR: In this article, the main component of the antifungal, hydrophilic phosphono-oligopeptides of Bacillus subtilis ATCC 6633 was used for sensitivity testing and experiments into the molecular mechanism of the antibiotic action.
Abstract: Rhizocticin A, the main component of the antifungal, hydrophilic phosphono-oligopeptides of Bacillus subtilis ATCC 6633, was used for sensitivity testing and experiments into the molecular mechanism of the antibiotic action. Budding and filamentous fungi as well as the cultivated nematode Caenorhabditis elegans were found to be sensitive, whereas bacteria and the protozoon Paramecium caudatum were insensitive. Rhizoctonia solani was inhibited in agar dilution tests but not in diffusion tests. The antifungal effect of rhizocticin A was neutralized by a variety of amino acids and oligopeptides. Oligopeptide influence was mainly understood as transport antagonism, and it was concluded that the antibiotic enters the recipeint cell via the peptide transport system. l- and d-cystine were also identified as potent, general antagonists of the oligopeptide transport. The rhizocticin-antagonism of four other amino acids was taken as a clue to the site of action. Provided that rhizocticin A is split by peptidases of the target cell into inactive l-arginine and toxic l-2-amino-5-phosphono-3-cis-pentenoic acid (l-APPA), the latter may interfere with the threonine or threonine-related metabolism.

Journal ArticleDOI
TL;DR: A new genus Desulfurella is proposed with the type species Desulfuromonas acetivorans, based on morphological and physiological features of the new isolate of sulfur-reducing bacteria found in the Uzon caldere, which is demonstrated to be a true dissimilatory sulfur reducer.
Abstract: A new type of thermophilic cyanobacterial mat, rich in elemental sulfur and containing large numbers of sulfur-reducing bacteria able to utilize different growth substrates at 55° C, was found in the Uzon caldere (Kamchatka). One of the largest groups among these organisms were acetate-oxidizing sulfur-reducing bacteria, numbering 106 cells · cm−3 of mat. The pure culture of a sulfur-reducing eubacterium growing on acetate was isolated. Cells of the new isolate are Gram-negative short rods, often in pairs, motile, with a single polar flagellum. The optimal temperature for growth is 52 to 57° C, with no growth observed at 42 or 73° C. The pH optimum is 6.8 to 7.0. The new isolate is demonstrated to be a true dissimilatory sulfur reducer: it is an obligate anaerobe, it is unable to ferment organic substrates and it can use no electron acceptors other than elemental sulfur. Acetate is the only energy and carbon source, and H2S and CO2 are growth products. No cytochromes were detected. The G+C content of DNA is rather low, only 31.4 mol%. Thus, morphological and physiological features of the new isolate are quite close to those of Desulfuromonas. But on the grounds of a significant difference in the G+C content of DNA, the absence of cytochromes and because of its thermophilic nature, a new genus Desulfurella is proposed with the type species Desulfurella acetivorans.

Journal ArticleDOI
TL;DR: Two isoprene (2-methyl-1,3-butadiene) utilizing bacteria, Alcaligenes denitrificans ssp.
Abstract: Two isoprene (2-methyl-1,3-butadiene) utilizing bacteria, Alcaligenes denitrificans ssp. xylosoxidans JE 75 and Rhodococcus erythropolis JE 77, were identified as highly efficient cooxidizers of TCE, cis- and transdichloroethene, 1,1-dichloroethene and vinylchloride. Isoprene grown cells eliminate chloride from TCE in stoichiometric amounts and tolerate high concentrations of TCE.

Journal ArticleDOI
TL;DR: 16S rRNA sequencing of isolate H 21 and Fervidobacterium nodosum indicated that isolate H21 represents a new species of the genus Fervidebacterium which the genus belongs to the “Thermotogales” branch.
Abstract: An extremely thermophilic anaerobic fermentative eubacterium growing at temperatures between 50 and 80°C (opt.: 65°C) was isolated from an Icelandic hot spring. The cells were Gram-negative motile rods, about 1.8 μm in length, and 0.6 μm in width occurring singly and in pairs. About 50% of the cells formed large spheroids at one end similar to Fervidobacterium nodosum. The new isolate H 21 differed from Fervidobacterium nodosum by a 6 mol % higher GC-content of its DNA (41 mol %), its ability to grow on cellulose, and insignificant DNA homology. The lipids of isolate H 21 were similar to that of members of “Thermotogales”. 16S rRNA sequencing of isolate H 21 and Fervidobacterium nodosum indicated (a) that isolate H 21 represents a new species of the genus Fervidobacterium which we name Fervidobacterium islandicum and (b) that the genus Fervidobacterium belongs to the “Thermotogales” branch.

Journal ArticleDOI
TL;DR: The new Nitrobacter spec.
Abstract: A total of 17 facultatively lithoautotrophic strains of Nitrobacter were investigated. They all were found to be related on the species level by DNA hybridizations. The G+C content of DNA ranged between 58.9 and 59.9 mol %. The isolates originated from divers environments. The cells were 0.5−0.8×1.2−2.0 μm in size and motile by one polar to subpolar flagellum. Cell-division normally occurred by budding. Polar caps of intracytoplasmic membranes as well as carboxysomes were present. The cells tended to excrete extracellular polymers forming aggregates or biofilms. Heterotrophic growth was slower than mixotrophic but often faster than litoautotrophic growth. In the presence of nitrite and organic substances the organisms often showed diphasic growth. First nitrite and then the organic material was oxidized. In the absence of oxygen growth was possible by dissimilatory nitrate reduction. Nitrite, nitric and nitrous oxide as well as ammonia were formed. Depending on growth conditions the generation times varied from 12 to 140 h. The new Nitrobacter spec. may be one of the most abundant nitrite-oxidizing bacteria in soils, fresh waters and natural as well as artificial stones. For this organism the name Nitrobacter vulgaris is proposed. The type strain is filed with the culture collection of the Institut fur Allgemeine Botanik, Universitat Hamburg, FRG.

Journal ArticleDOI
TL;DR: The results suggest that MK is specifically involved in the electron transport chains catalyzing the reduction of fumarate or DMSO, while either MK or DMK serve as mediators in TMAO reduction.
Abstract: The respiratory activities of E. coli with H2 as donor and with nitrate, fumarate, dimethylsulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as acceptor were measured using the membrane fraction of quinone deficient strains. The specific activities of the membrane fraction lacking naphthoquinones with fumarate, DMSO or TMAO amounted to less than or equal to 2% of those measured with the membrane fraction of the wild-type strain. After incorporation of vitamin K1 [instead of menaquinone (MK)] into the membrane fraction deficient of naphthoquinones, the activities with fumarate or DMSO were 92% or 17%, respectively, of the activities which could be theoretically achieved. Incorporation of demethylmenaquinone (DMK) did not lead to a stimulation of the activities of the mutant. In contrast, the electron transport activity with TMAO was stimulated by the incorporation of either vitamin K1 or DMK. Nitrate respiration was fully active in membrane fractions lacking either naphthoquinones or Q, but was less than or equal to 3% of the wild-type activity, when all quinones were missing. Nitrate respiration was stimulated on the incorporation of either vitamin K1 or Q into the membrane fraction lacking quinones, while the incorporation of DMK was without effect. These results suggest that MK is specifically involved in the electron transport chains catalyzing the reduction of fumarate or DMSO, while either MK or DMK serve as mediators in TMAO reduction. Nitrate respiration requires either Q or MK.

Journal ArticleDOI
TL;DR: The enzyme was sensitive to catabolite repression by succinate both in presence as well as absence of nitrogen source, and could act on other short chain amides like formamide and acetamide but not on acrylamides analogues: methacrylamide and N,N-methylene bis-acryamide.
Abstract: Acrylamide, a neurotoxic monomer with extensive industrial applications was found to be degraded by the microorganisms present in a tropical garden soil. A bacterium capable of degrading acrylamide was isolated from this soil by enrichment. It was found to be aerobic, gram-negative, motile, short rod and identified as Pseudomonas sp. The bacterium degraded high concentrations of acrylamide (4 g/l) to acrylic acid and ammonia which were utilized as sole carbon and nitrogen source for growth. An amidase was involved in the hydrolysis of acrylamide, which could act on other short chain amides like formamide and acetamide but not on acrylamide analogues: methacrylamide and N,N-methylene bis-acrylamide. The enzyme was sensitive to catabolite repression by succinate both in presence as well as absence of nitrogen source.

Journal ArticleDOI
TL;DR: Evidence for two different aniline-oxygenase systems in strain CA28 with distinct activity pattern on chlorinated and nonsubstituted anilines was demonstrated by oxygen uptake rate experiments with anILine and chloroaniline pregrown cells, and degradation was shown to be initialized by catechol dioxygenases.
Abstract: Four bacterial strains (CA26, CA28, CA37, and CA45), which all were able to use aniline, 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) as sole sources of carbon, nitrogen and energy, were isolated after enrichment in aerated soil columns and identified as Pseudomonas acidovorans strains. In addition strains CA26 and CA45 were able to degrade 2-chloroaniline (2-CA) at very low rates. At 25°C strain CA28 was grown on aniline and 3-CA with generation times of 3.0 and 7.7 h, respectively, and exhibited complete mineralization of these substrates in degradation rates of 2.25 mmol aniline and 1.63 mmol 3-CA g-1 of biomass per hour, respectively. Degradation of 4-CA occurred at 1.54 mmol 4-CA g-1 of biomass per hour and a generation time of 18.7 h but, in contrast, was not complete due to formation of minor amounts of chlorohydroxymuconic semialdehyde, a meta-cleavage product of 4-chlorocatechol. The initial attack on the substrate, the formation of corresponding chlorocatechols from 3-CA and 4-CA, was found to be the rate-limiting degradation step. Evidence for two different aniline-oxygenase systems in strain CA28 with distinct activity pattern on chlorinated and nonsubstituted anilines was demonstrated by oxygen uptake rate experiments with aniline and chloroaniline pregrown cells. Further degradation was shown to be initialized by catechol dioxygenases.

Journal ArticleDOI
TL;DR: The ethanol-oxidizing, proton-reducing Pelobacter acetylenicus was grown in chemostat cocultures with either Acetobacterium woodii, Methanobacteria bryantii, or Desulfovibrio desulfuricans and the potentially available energy was used more efficiently by homoacetogens > methanogens > sulfate reducers.
Abstract: The ethanol-oxidizing, proton-reducing Pelobacter acetylenicus was grown in chemostat cocultures with either Acetobacterium woodii, Methanobacterium bryantii, or Desulfovibrio desulfuricans. Ymax and me were determined from the total molar growth yields determined at growth (dilution) rates between 0.02 and 0.14 h-1. The individual growth yields of the partner organisms were determined from their numbers and cellular mass in the chemostat cocultures. The Gibbs free energy (ΔG=-16.3 kJ/mol ethanol) available to P. acetylenicus as well as its Ymax (1.7–2.2 g/mol ethanol) were almost constant in the different cocultures. P. acetylenicus shared 44–67% of the total biomass produced, whereas it shared only 19, 23, and 37% of the total Gibbs free energy (ΔG) available from ethanol oxidation coupled to sulfate reduction, methanogenesis, and homoacetogenesis, respectively. The residual 63–81% of the total available ΔG were shared by the H2 oxidizers which exhibited Ymax values being highest for A. woodii (6.6 g/mol acetate) > D. desulfuricans (3.8 g/mol sulfide) > M. bryantii (2.2 g/mol CH4). The results are discussed with respect to ATP generation and coupling of catabolism with cell production.

Journal ArticleDOI
TL;DR: The finding that uptake of particle-bound DNA by P. stutzeri in soil is possible adds evidence to the view that transformation occurs in natural environments where DNA is assumed to be significantly associated with mineral/particulate material and thereby is protected against enzymatic degradation.
Abstract: In a soil/sediment model system we have shown recently that a gram-positive bacterium with natural competence (Bacillus subtilis) can take up transforming DNA adsorbed to sand minerals. Here we examined whether also a naturally transformable soil bacterium of the gramnegative pseudomonad (Pseudomonas stutzeri) can be transformed by mineral-associated DNA. for these studies the transformation protocol of this species was further improved and characterized. The peak of competence during growth of P. stutzeri was determined to occur at the beginning of the stationary phase. The competence state was conserved during shock freezing and thawing of cells in 10% glycerol. Kinetic experiments showed that transformant formation after addition of DNA to competent cells proceeded for more than 2 h with DNA adsorption to cells being the rate limiting step. By means of the defined protocol P. stutzeri was shown to be transformed by sand-adsorbed DNA. Transformation by adsorbed or dissolved DNA occurred between 16° and 44°C. Efficiency and DNaseI-sensitivity of transformation by DNA adsorbed to sand or in liquid were comparable. It is concluded that uptake of particle-bound DNA by P. stutzeri in soil is possible. This finding adds evidence to the view that transformation occurs in natural environments where DNA is assumed to be significantly associated with mineral/particulate material and thereby is protected against enzymatic degradation.

Journal ArticleDOI
TL;DR: A many-called magnetotactic prokaryote obtained from brackish water was observed to possess intercellular connections at points of contact between the outer membranes of constituent cells, suggesting that this organism could be a multicellular proKaryote.
Abstract: A many-called magnetotactic prokaryote obtained from brackish water was observed to possess intercellular connections at points of contact between the outer membranes of constituent cells. Each aggregate organism consisted of 10 to 30 individual Gram-negative cells containing material with the appearance of poly-β-hydroxybutyrate and magnetosomes of unusual arrangement, structure and composition. The aggregate, which possessed prokaryotic-type flagella arranged at the outwards surfaces of each cell, showed motility indicative of co-ordination between individual component cells. These results suggest that this organism could be a multicellular prokaryote.

Journal ArticleDOI
TL;DR: Enterococcus faecalis NCTC 775 was grown anaerobically in chemostat culture with pyruvate as the energy source and at low culture pH values, high in vivo and in vitro activities were found for both pyruVate dehydrogenase and lactate dehydrogensase.
Abstract: Enterococcus faecalis NCTC 775 was grown anaerobically in chemostat culture with pyruvate as the energy source. At low culture pH values, high in vivo and in vitro activities were found for both pyruvate dehydrogenase and lactate dehydrogenase. At high culture pH values the carbon flux was shifted towards pyruvate formate lyase. Some mechanisms possibly involved in this metabolic switch are discussed. In particular attention is paid to the NADH/NAD ratio (redox potential) and the fructose-1,6-bisphosphate-dependent lactate dehydrogenase activity as possible regulatory factors.

Journal ArticleDOI
TL;DR: Growth lag times prior to the on-set of degradation, and the total time required for degradation, were linearly related to the starting population density and the initial 2,4-D concentration.
Abstract: A Pseudomonas cepacia, designated strain BRI6001, was isolated from peat by enrichment culture using 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. BRI6001 grew at up to 13 mM 2,4-D, and degraded 1 mM 2,4-D at an average starting population density as low as 1.5 cells/ml. Degradation was optimal at acidic pH, but could also be inhibited at low pH, associated with chloride release from the substrate, and the limited buffering capacity of the growth medium. The only metabolite detected during growth on 2,4-D was 2,4-dichlorophenol (2,4-DCP), and degradation of the aromatic nucleus was by intradiol cleavage. Growth lag times prior to the on-set of degradation, and the total time required for degradation, were linearly related to the starting population density and the initial 2,4-D concentration. BRI6001, grown on 2,4-D, oxidized a variety of structurally similar chlorinated aromatic compounds accompanied by stoichiometric chloride release.

Journal ArticleDOI
TL;DR: This study has studied the induction of peroxisomes in the methylotrophic yeast Candida boidinii by d-alanine and oleic acid, which was able to utilize each of these compounds as the sole carbon source and grew with growth rates of μ=0.20 h-1.
Abstract: We have studied the induction of peroxisomes in the methylotrophic yeast Candida boidinii by D-alanine and oleic acid. The organism was able to utilize each of these compounds as the sole carbon source and grew with growth rates of mu = 0.20 h-1 (on D-alanine) or mu = 0.43 h-1 (on oleic acid). Growth was associated with the development of many peroxisomes in the cells. On D-alanine a cluster of tightly interwoven organelles was observed which made up 6.3% of the cytoplasmic volume and were characterized by the presence of D-amino acid oxidase and catalase. On oleic acid rounded to elongated peroxisomes were dominant which were scattered throughout the cytoplasm. These organelles contained increased levels of beta-oxidation enzymes; their relative volume fraction amounted 12.8% of the cytoplasmic volume.

Journal ArticleDOI
TL;DR: Four isolates of a gram-negative flexible bacterium have been obtained from brine water samples of the Atlantis II Deep of the Red Sea at a depth of 2000 m, and a new genus is described, which is named Flexistipes, the flexible stick, because they show no specific relationship to any of them.
Abstract: Four isolates of a gram-negative flexible bacterium have been obtained from brine water samples of the Atlantis II Deep of the Red Sea at a depth of 2000 m. One isolate (MAS 10) was studied in detail. Cells are nonmotile, flexible rods, measuring about 0.3 μm in width and 5 to 50 μm in length. The new organisms are heterotrophs growing anaerobically on yeast extract, meat extract, peptone, tryptone, and, less efficiently, on acetate and casamino acids. Growth occurs between 30% and 53°C at pH 6 to 8 in the presence of at least 3% NaCl. The shortest doubling time is 8.5 h under optimal growth conditions. Cells are sensitive to the antibiotics penicillin, ampicillin, vancomycin, and streptomycin, but resistant to tetracyclin and rifamipicin. The GC-content of the DNA is 39 mol%. Based on their 16S rRNA the new isolates group with the general cluster of eubacterial phyla. Since they show no specific relationship to any of them, a new genus is described, which is named Flexistipes, the flexible stick. Type species is Flexistipes sinusarabici strain MAS 10 (DSM 4947).

Journal ArticleDOI
TL;DR: It is concluded that two different pathways of anaerobic 1,3-benzenediol metabolism exist and both are oxygen-sensitive and uses reduced methyl viologen as artificial electron donor.
Abstract: The anaerobic metabolism of 2,4- and 2,6-dihydroxybenzoic acid (beta- and gamma-resorcyclic acid) and 1,3-benzenediol (resorcinol) was investigated in a fermenting coculture of a Clostridium sp. with a Campylobacter sp. (Tschech A and Schink B (1985) Arch Microbiol 143: 52–59) and in a newly isolated denitrifying gram-negative bacterium. The enzymes of this pathway were searched for and partly characterized in vitro. It is shown that resorcyclic acids are decarboxylated in both organisms by specific enzymes, 2,4- or 2,6-dihydroxybenzoic acid decarboxylase. In the fermenting bacterium, the aromatic product, 1,3-benzenediol, is reduced by 1,3-benzenediol (resorcinol) reductase to the non-aromatic 1,3-cyclohexanedione; the novel enzyme which catalyzes the two-electron-reduction of the aromatic nucleus is oxygen-sensitive and uses reduced methyl viologen as artificial electron donor. The cyclic dione is then hydrolytically cleaved to 5-oxocaproic acid by 1,3-cyclohexanedione hydrolase. The denitrifying bacterium did not metabolize 1,3-cyclohexanedione, and the enzymes metabolizing 1,3-benzenediol or 1,3-cyclohexanedione were not detected. It is concluded that two different pathways of anaerobic 1,3-benzenediol metabolism exist.

Journal ArticleDOI
TL;DR: An obligately anaerobic thermophilic sporeforming sulfate-reducing bacterium, named strain CAMZ, was isolated from a benzoate enrichment from a 58°C thermophilicity bioreactor as discussed by the authors.
Abstract: An obligately anaerobic thermophilic sporeforming sulfate-reducing bacterium, named strain CAMZ, was isolated from a benzoate enrichment from a 58°C thermophilic anaerobic bioreactor. The cells of strain CAMZ were 0.7 μm by 2–5 μm rods with pointed ends, forming single cells or pairs. Spores were central, spherical, and caused swelling of the cells. The Gram stain was negative. Electron donors used included lactate, pyruvate, acetate and other short chain fatty acids, short chain alcohols, alanine, and H2/CO2. Lactate and pyruvate were oxidized completely to CO2 with sulfate as electron acceptor. Sulfate was required for growth on H2/CO2, and both acetate and sulfide were produced from H2/CO2-sulfate. Sulfate, thiosulfate, or elemental sulfur served as electron acceptors with lactate as the donor while sulfite, nitrate, nitrite, betaine, or a hydrogenotrophic methanogen did not. The optimum temperature for growth of strain CAMZ was 55–60°C and the optimum pH value was 6.5. The specific activities of carbon monoxide dehydrogenase of cells of strain CAMZ grown on lactate, H2/CO2, or acetate with sulfate were 7.2, 18.1, and 30.8 μmol methyl viologen reduced min−1 [mg protein]−1, respectively, indicating the presence of the CO/Acetyl-CoA pathway in this organism. The mol%-G+C of strain CAMZ's DNA was 49.7. The new species name Desulfotomaculum thermoacetoxidans is proposed for strain CAMZ.

Journal ArticleDOI
TL;DR: This is the first isolation of an anaerobic bacterium capable of degrading exogenous PHB, and experimental evidence suggested the production of an extracellular PHB depolymerase.
Abstract: Enrichments from an estuarine sediment with crotonate as substrate resulted in the isolation of a motile, gram-negative, obligately anaerobic rod with pointed ends, designated strain 10cr1. The organism was asporogenous, did not reduce sulfur, sulfate, thiosulfate, nitrate, oxygen or fumarate, and had a mol %G+C ratio of 29. Strain 10cr1 was able to ferment crotonate, 3-hydroxybutyrate, lactate, pyruvate, and poly-β-hydroxybutyric acid (PHB). Acetate, propionate, butyrate, CO2 and H2 were the fermentation products. When grown on PHB there was accumulation of 3-hydroxybutyrate once growth had ceased, indicating degradation of PHB to the monomer. The 3-hydroxybutyrate formed during growth of the culture was fermented to acetate, butyrate and H2. Experimental evidence suggested the production of an extracellular PHB depolymerase. The cells were not attached to the PHB granules. This is the first isolation of an anaerobic bacterium capable of degrading exogenous PHB. This strain is described as a new species, Ilyobacter delafieldii sp. nov., and strain 10cr1 (=DSM 5704) is designated as the type (and at present, only) strain.