scispace - formally typeset
Search or ask a question

Showing papers in "Bioengineering in 2022"


Journal ArticleDOI
TL;DR: This wave of commercialization of PHAs in single-use and in durable applications holds the potential to make the decisive quantum leap in reducing plastic pollution, the depletion of fossil resources, and the emission of greenhouse gases and thus fighting climate change.
Abstract: The ever-increasing use of plastics, their fossil origin, and especially their persistence in nature have started a wave of new innovations in materials that are renewable, offer the functionalities of plastics, and are biodegradable. One such class of biopolymers, polyhydroxyalkanoates (PHAs), are biosynthesized by numerous microorganisms through the conversion of carbon-rich renewable resources. PHA homo- and heteropolyesters are intracellular products of secondary microbial metabolism. When isolated from microbial biomass, PHA biopolymers mimic the functionalities of many of the top-selling plastics of petrochemical origin, but biodegrade in soil, freshwater, and marine environments, and are both industrial- and home-compostable. Only a handful of PHA biopolymers have been studied in-depth, and five of these reliably match the desired material properties of established fossil plastics. Realizing the positive attributes of PHA biopolymers, several established chemical companies and numerous start-ups, brand owners, and converters have begun to produce and use PHA in a variety of industrial and consumer applications, in what can be described as the emergence of the “PHA industry”. While this positive industrial and commercial relevance of PHA can hardly be described as the first wave in its commercial development, it is nonetheless a very serious one with over 25 companies and start-ups and 30+ brand owners announcing partnerships in PHA production and use. The combined product portfolio of the producing companies is restricted to five types of PHA, namely poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), even though PHAs as a class of polymers offer the potential to generate almost limitless combinations of polymers beneficial to humankind. To date, by varying the co-monomer type and content in these PHA biopolymers, their properties emulate those of the seven top-selling fossil plastics, representing 230 million t of annual plastics production. Capacity expansions of 1.5 million t over the next 5 years have been announced. Policymakers worldwide have taken notice and are encouraging industry to adopt biodegradable and compostable material solutions. This wave of commercialization of PHAs in single-use and in durable applications holds the potential to make the decisive quantum leap in reducing plastic pollution, the depletion of fossil resources, and the emission of greenhouse gases and thus fighting climate change. This review presents setbacks and success stories of the past 40 years and the current commercialization wave of PHA biopolymers, their properties, and their fields of application.

58 citations


Journal ArticleDOI
TL;DR: The potential of these delivery systems to increase the skin permeability of drugs with anti-inflammatory, sun-protection, anticarcinogenic and/or wound-healing activities is reported.
Abstract: Microemulsions and nanoemulsions are lipid-based pharmaceutical systems with a high potential to increase the permeation of drugs through the skin. Although being isotropic dispersions of two nonmiscible liquids (oil and water), significant differences are encountered between microemulsions and nanoemulsions. Microemulsions are thermodynamically stable o/w emulsions of mean droplet size approximately 100–400 nm, whereas nanoemulsions are thermodynamically unstable o/w emulsions of mean droplet size approximately 1 to 100 nm. Their inner oil phase allows the solubilization of lipophilic drugs, achieving high encapsulation rates, which are instrumental for drug delivery. In this review, the importance of these systems, the key differences regarding their composition and production processes are discussed. While most of the micro/nanoemulsions on the market are held by the cosmetic industry to enhance the activity of drugs used in skincare products, the development of novel pharmaceutical formulations designed for the topical, dermal and transdermal administration of therapeutic drugs is being considered. The delivery of poorly water-soluble molecules through the skin has shown some advantages over the oral route, since drugs escape from first-pass metabolism; particularly for the treatment of cutaneous diseases, topical delivery should be the preferential route in order to reduce the number of drugs used and potential side-effects, while directing the drugs to the site of action. Thus, nanoemulsions and microemulsions represent versatile options for the delivery of drugs through lipophilic barriers, and many synthetic and natural compounds have been formulated using these delivery systems, aiming to improve stability, delivery and bioactivity. Detailed information is provided concerning the most relevant recent scientific publications reporting the potential of these delivery systems to increase the skin permeability of drugs with anti-inflammatory, sun-protection, anticarcinogenic and/or wound-healing activities. The main marketed skincare products using emulsion-based systems are also presented and discussed.

45 citations


Journal ArticleDOI
TL;DR: Autism hug machine portable seat (AHMPS) inflatable wrap is an effective method to reduce emotional arousal and neurobiological stress was reduced in children who were wearing the AHMPS inflatable Wrap.
Abstract: Children with autism spectrum disorder (ASD) have challenging behaviors, which are associated with difficulties in parenting. Deep pressure is a therapeutic modality in occupational therapy, and it was reported to produce a calming effect. This study aimed to determine whether the short-term use of an autism hug machine portable seat (AHMPS) improves behavioral and neurobiological stress in children with ASD, and to determine whether AHMPS with an inflatable wrap or manual pull is more effective. This study enrolled children with ASD who were administered with the inflatable wrap (group I) and manual pull (group II) for 20 min twice a week for 3 weeks. Conners’ Parent Rating Scale-48 (CPRS-48) was used to rate behavioral improvements, and galvanic skin response (GSR) was used to measure sympathetic stress response. A total of 20 children with ASD (14 boys and 6 girls; aged 7–13 years) were included. CPRS-48 presented conduct problems: behavior was significantly decreased in the inflatable group (p = 0.007) compared to the manual pull group. The GSR captured a significant reduction in sympathetic response (p = 0.01) only in group I. Neurobiological stress was reduced in children who were wearing the AHMPS inflatable wrap; therefore, AHMPS inflatable wrap is an effective method to reduce emotional arousal.

25 citations


Journal ArticleDOI
TL;DR: An overview of recent developments in green ZnO NP synthesis is presented, emphasizing plant parts as reducing agents and their medical applications, including their antimicrobial, anticancer, antioxidant, and anti-inflammatory properties, as well as key mechanisms of action for these applications to facilitate further research on the biomedical fields in the future.
Abstract: Compared to traditional physical and chemical approaches, nanobiotechnology and plant-based green synthesis procedures offer significant advantages, as well as having a greater range of medical and biotechnological applications. Nanoparticles of zinc oxide (ZnO NPs) have recently been recognized as a promising option for many industries, including optics, electrics, packaged foods, and medicine, due to their biocompatibility, low cytotoxicity, and cost-effectiveness. Several studies have shown that zinc ions are important in triggering cell apoptosis by promoting the generation of reactive oxygen species (ROSs) and releasing zinc ions (Zn2+), which are toxic to cells. The toxic nature of the chemicals used in the synthesis of ZnO nanoparticles limits their clinical utility. An overview of recent developments in green ZnO NP synthesis is presented in this review, emphasizing plant parts as reducing agents and their medical applications, including their antimicrobial, anticancer, antioxidant, and anti-inflammatory properties, as well as key mechanisms of action for these applications to facilitate further research on the biomedical fields in the future.

25 citations


Journal ArticleDOI
TL;DR: The proposed approach to effectively detect CKD by combining the information-gain-based feature selection technique and a cost-sensitive adaptive boosting (AdaBoost) classifier has produced an effective predictive model for CKD diagnosis and could be applied to more imbalanced medical datasets for effective disease detection.
Abstract: The high prevalence of chronic kidney disease (CKD) is a significant public health concern globally. The condition has a high mortality rate, especially in developing countries. CKD often go undetected since there are no obvious early-stage symptoms. Meanwhile, early detection and on-time clinical intervention are necessary to reduce the disease progression. Machine learning (ML) models can provide an efficient and cost-effective computer-aided diagnosis to assist clinicians in achieving early CKD detection. This research proposed an approach to effectively detect CKD by combining the information-gain-based feature selection technique and a cost-sensitive adaptive boosting (AdaBoost) classifier. An approach like this could save CKD screening time and cost since only a few clinical test attributes would be needed for the diagnosis. The proposed approach was benchmarked against recently proposed CKD prediction methods and well-known classifiers. Among these classifiers, the proposed cost-sensitive AdaBoost trained with the reduced feature set achieved the best classification performance with an accuracy, sensitivity, and specificity of 99.8%, 100%, and 99.8%, respectively. Additionally, the experimental results show that the feature selection positively impacted the performance of the various classifiers. The proposed approach has produced an effective predictive model for CKD diagnosis and could be applied to more imbalanced medical datasets for effective disease detection.

24 citations


Journal ArticleDOI
TL;DR: The literature review of the development of COVID-19 vaccines, their effectiveness, and their use in special patient groups found that most vaccines remain sufficiently effective regardless of the variant of the virus.
Abstract: Vaccination is one of the key strategies to stop the COVID-19 pandemic. This review aims to evaluate the current state of vaccine development and to determine the issues that merit additional research. We conducted a literature review of the development of COVID-19 vaccines, their effectiveness, and their use in special patient groups. To date, 140 vaccines are in clinical development. Vector, RNA, subunit, and inactivated vaccines, as well as DNA vaccines, have been approved for human use. Vector vaccines have been well studied prior to the COVID-19 pandemic; however, their long-term efficacy and approaches to scaling up their production remain questionable. The main challenge for RNA vaccines is to improve their stability during production, storage, and transportation. For inactivated vaccines, the key issue is to improve their immunogenicity and effectiveness. To date, it has been shown that the immunogenicity of COVID-19 vaccines directly correlates with their clinical efficacy. In view of the constant mutation, the emerging new SARS-CoV-2 variants have been shown to be able to partially escape post-vaccination immune response; however, most vaccines remain sufficiently effective regardless of the variant of the virus. One of the promising strategies to improve the effectiveness of vaccination, which is being studied, is the use of different platforms within a single vaccination course. Despite significant progress in the development and study of COVID-19 vaccines, there are many issues that require further research.

24 citations


Journal ArticleDOI
TL;DR: A robust approach has been introduced where 2D scalogram images of ECG signals are trained over the CNN-LSTM model and the results obtained are better as compared to the other existing techniques and will greatly reduce the amount of intervention required by doctors.
Abstract: Arrhythmias are defined as irregularities in the heartbeat rhythm, which may infrequently occur in a human’s life. These arrhythmias may cause potentially fatal complications, which may lead to an immediate risk of life. Thus, the detection and classification of arrhythmias is a pertinent issue for cardiac diagnosis. (1) Background: To capture these sporadic events, an electrocardiogram (ECG), a register containing the heart’s electrical function, is considered the gold standard. However, since ECG carries a vast amount of information, it becomes very complex and challenging to extract the relevant information from visual analysis. As a result, designing an efficient (automated) system to analyse the enormous quantity of data possessed by ECG is critical. (2) Method: This paper proposes a hybrid deep learning-based approach to automate the detection and classification process. This paper makes two-fold contributions. First, 1D ECG signals are translated into 2D Scalogram images to automate the noise filtering and feature extraction. Then, based on experimental evidence, by combining two learning models, namely 2D convolutional neural network (CNN) and the Long Short-Term Memory (LSTM) network, a hybrid model called 2D-CNN-LSTM is proposed. (3) Result: To evaluate the efficacy of the proposed 2D-CNN-LSTM approach, we conducted a rigorous experimental study using the widely adopted MIT–BIH arrhythmia database. The obtained results show that the proposed approach provides ≈98.7%, 99%, and 99% accuracy for Cardiac Arrhythmias (ARR), Congestive Heart Failure (CHF), and Normal Sinus Rhythm (NSR), respectively. Moreover, it provides an average sensitivity of the proposed model of 98.33% and a specificity value of 98.35%, for all three arrhythmias. (4) Conclusions: For the classification of arrhythmias, a robust approach has been introduced where 2D scalogram images of ECG signals are trained over the CNN-LSTM model. The results obtained are better as compared to the other existing techniques and will greatly reduce the amount of intervention required by doctors. For future work, the proposed method can be applied over some live ECG signals and Bi-LSTM can be applied instead of LSTM.

22 citations


Journal ArticleDOI
TL;DR: The sugar amounts produced from one-pot processes using 1 mg of CBD2 and CBD3 were higher than that of Celluclast 1.5 L by 2.0 and 4.5 times, respectively, suggesting their potential for further application in the biorefining process of value-added products.
Abstract: Ionic liquid (IL) pretreatment of lignocellulose is an efficient method for the enhancement of enzymatic saccharification. However, the remaining residues of ILs deactivate cellulase, therefore making intensive biomass washing after pretreatment necessary. This study aimed to develop the one-pot process combining IL pretreatment and enzymatic saccharification by using low-toxic choline acetate ([Ch][OAc]) and IL-tolerant bacterial cellulases. Crude cellulases produced from saline soil inhabited Bacillus sp. CBD2 and Brevibacillus sp. CBD3 were tested under the influence of 0.5–2.0 M [Ch][OAc], which showed that their activities retained at more than 95%. However, [Ch][OAc] had toxicity to CBD2 and CBD3 cultures, in which only 32.85% and 12.88% were alive at 0.5 M [Ch][OAc]. Based on the specific enzyme activities, the sugar amounts produced from one-pot processes using 1 mg of CBD2 and CBD3 were higher than that of Celluclast 1.5 L by 2.0 and 4.5 times, respectively, suggesting their potential for further application in the biorefining process of value-added products.

22 citations


Journal ArticleDOI
TL;DR: In this paper , three kinds of medium (modified anaerobic digestion wastewater, anaerobate wastewater and a standard growth medium BG11) were used to culture microalgae towards achieving high-quality biodiesel products.
Abstract: Improving the efficiency of using energy and decreasing impacts on the environment will be an inevitable choice for future development. Based on this direction, three kinds of medium (modified anaerobic digestion wastewater, anaerobic digestion wastewater and a standard growth medium BG11) were used to culture microalgae towards achieving high-quality biodiesel products. The results showed that microalgae culturing with anaerobic digestate wastewater could increase lipid content (21.8%); however, the modified anaerobic digestion wastewater can boost the microalgal biomass production to 0.78 ± 0.01 g/L when compared with (0.35–0.54 g/L) the other two groups. Besides the first step lipid extraction, the elemental composition, thermogravimetric and pyrolysis products of the defatted microalgal residues were also analysed to delve into the utilisation potential of microalgae biomass. Defatted microalgae from modified wastewater by pyrolysis at 650 °C resulted in an increase in the total content of valuable products (39.47%) with no significant difference in the content of toxic compounds compared to other groups. Moreover, the results of the life cycle assessment showed that the environmental impact (388.9 mPET2000) was lower than that of raw wastewater (418.1 mPET2000) and standard medium (497.3 mPET2000)-cultivated groups. Consequently, the method of culturing microalgae in modified wastewater and pyrolyzing algal residues has a potential to increase renewable energy production and reduce environmental impact.

22 citations


Journal ArticleDOI
TL;DR: The intrinsic ability of magnesium and its alloys to degrade without releasing toxic degradation products has led to a vast range of applications in the biomedical field, including cardiovascular stents, musculoskeletal, and orthopedic applications as discussed by the authors .
Abstract: In recent decades, we have witnessed radical changes in the use of permanent biomaterials. The intrinsic ability of magnesium (Mg) and its alloys to degrade without releasing toxic degradation products has led to a vast range of applications in the biomedical field, including cardiovascular stents, musculoskeletal, and orthopedic applications. With the use of biodegradable Mg biomaterials, patients would not suffer second surgery and surgical pain anymore. Be that as it may, the main drawbacks of these biomaterials are the high corrosion rate and unexpected degradation in physiological environments. Since biodegradable Mg-based implants are expected to show controllable degradation and match the requirements of specific applications, various techniques, such as designing a magnesium alloy and modifying the surface characteristics, are employed to tailor the degradation rate. In this paper, some fundamentals and particular aspects of magnesium degradation in physiological environments are summarized, and approaches to control the degradation behavior of Mg-based biomaterials are presented.

22 citations


Journal ArticleDOI
TL;DR: A two-photon photodynamic approach using third-generation photosensitizers for the treatment of tumors is discussed, which indicates the prospects for the further development of a promising method antitumor PDT.
Abstract: The effectiveness of photodynamic therapy (PDT) is based on the triad effects of photosensitizer (PS), molecular oxygen and visible light on malignant tumors. Such complex induces a multifactorial manner including reactive-oxygen-species-mediated damage and the killing of cells, vasculature damage of the tumor, and activation of the organism immunity. The effectiveness of PDT depends on the properties of photosensitizing drugs, their selectivity, enhanced photoproduction of reactive particles, absorption in the near infrared spectrum, and drug delivery strategies. Photosensitizers of the tetrapyrrole structure (porphyrins) are widely used in PDT because of their unique diagnostic and therapeutic functions. Nevertheless, the clinical use of the first-generation PS (sodium porfimer and hematoporphyrins) revealed difficulties, such as long-term skin photosensitivity, insufficient penetration into deep-seated tumors and incorrect localization to it. The second generation is based on different approaches of the synthesis and conjugation of porphyrin PS with biomolecules, which made it possible to approach the targeted PDT of tumors. Despite the fact that the development of the second-generation PS started about 30 years ago, these technologies are still in demand and are in intensive development, especially in the direction of improving the process of optimization split linkers responsive to input. Bioconjugation and encapsulation by targeting molecules are among the main strategies for developing of the PS synthesis. A targeted drug delivery system with the effect of increased permeability and retention by tumor cells is one of the ultimate goals of the synthesis of second-generation PS. This review presents porphyrin PS of various generations, discusses factors affecting cellular biodistribution and uptake, and indicates their role as diagnostic and therapeutic (theranostic) agents. New complexes based on porphyrin PS for photoimmunotherapy are presented, where specific antibodies are used that are chemically bound to PS, absorbing light from the near infrared part of the spectrum. Additionally, a two-photon photodynamic approach using third-generation photosensitizers for the treatment of tumors is discussed, which indicates the prospects for the further development of a promising method antitumor PDT.

Journal ArticleDOI
TL;DR: In this article , the structural and optical properties of Hematite nanoparticles were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV-visible and Fourier transform infrared (FTIR) spectroscopies.
Abstract: Nanoparticles (NPs) and nanomaterials (NMs) are now widely used in a variety of applications, including medicine, solar energy, drug delivery, water treatment, and pollution detection. Hematite (α-Fe2O3) nanoparticles (Hem-NPs) were manufactured in this work by utilizing a cost-effective and ecofriendly approach that included a biomass filtrate of A. niger AH1 as a bio-reducer. The structural and optical properties of Hem-NPs were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV-visible and Fourier-transform infrared (FTIR) spectroscopies. The results revealed that all of the studied parameters, as well as their interactions, had a significant impact on the crystallite size. The average diameter size of the biosynthesized Hem-NPs ranged between 60 and 80 nm. The antimicrobial and photocatalytic activities of Hem-NPs were investigated. The antimicrobial results of Hem-NPs revealed that Hem-NPs exhibited antibacterial activity against E. coli, B. subtilis, and S. mutans with MICs of 125, 31.25, and 15.62 µg/mL, respectively. Moreover, Hem-NPs exhibited antifungal activity against C. albicans and A. fumigatus, where the MICs were 2000 and 62.5 µg/mL, respectively. The efficiency of biosynthesized Hem-NPs was determined for the rapid biodegradation of crystal violet (CV) dye, reaching up to 97 percent after 150 min. Furthermore, Hem-NPs were successfully used more than once for biodegradation and that was regarded as its efficacy. In conclusion, Hem-NPs were successfully biosynthesized using A. niger AH1 and demonstrated both antimicrobial activity and photocatalytic activity against CV dye.

Journal ArticleDOI
TL;DR: A critical assessment of machine learning and deep learning models for the classification of skin tumors finds that pre-trained models perform extremely well for skin tumor classification, and metrics, such as the F-score and accuracy, indicate that this is most notably the case for VGG16.
Abstract: We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested in this work include logistic regression, linear discriminant analysis, k-nearest neighbors classifier, decision tree classifier and Gaussian naive Bayes, while deep learning (DL) models employed are either based on a custom Convolutional Neural Network model, or leverage transfer learning via the use of pre-trained models (VGG16, Xception and ResNet50). We find that DL models, with accuracies up to 0.88, all outperform ML models. ML models exhibit accuracies below 0.72, which can be increased to up to 0.75 with ensemble learning. To further assess the performance of DL models, we test them on a larger and more imbalanced dataset. Metrics, such as the F-score and accuracy, indicate that, after fine-tuning, pre-trained models perform extremely well for skin tumor classification. This is most notably the case for VGG16, which exhibits an F-score of 0.88 and an accuracy of 0.88 on the smaller database, and metrics of 0.70 and 0.88, respectively, on the larger database.

Journal ArticleDOI
TL;DR: The optical properties of gold nanorod-assisted photothermal therapy through combination with chemotherapy and photodynamic therapy are summarized and the recent strategies to improve this therapy are discussed.
Abstract: Noble metal nanoparticles have been sought after in cancer nanomedicine during the past two decades, owing to the unique localized surface plasmon resonance that induces strong absorption and scattering properties of the nanoparticles. A popular application of noble metal nanoparticles is photothermal therapy, which destroys cancer cells by heat generated by laser irradiation of the nanoparticles. Gold nanorods have stood out as one of the major types of noble metal nanoparticles for photothermal therapy due to the facile tuning of their optical properties in the tissue penetrative near infrared region, strong photothermal conversion efficiency, and long blood circulation half-life after surface modification with stealthy polymers. In this review, we will summarize the optical properties of gold nanorods and their applications in photothermal therapy. We will also discuss the recent strategies to improve gold nanorod-assisted photothermal therapy through combination with chemotherapy and photodynamic therapy.

Journal ArticleDOI
TL;DR: The deep pressure of the AHMPS inflating wrap decreases physiological arousal in children with ASD during traveling, and this effect is found to be better in group I than in group II.
Abstract: Traveling with children with autism can be very challenging for parents due to their reactions to sensory stimuli resulting in behavioral problems, which lead to self-injury and danger for themselves and others. Deep pressure was reported to have a calming effect on people with autism. This study was designed to investigate the physiological effect of deep pressure, which is an autism hug machine portable seat (AHMPS) in children with autism spectrum disorders (ASD) in public transportation settings. The study was conducted with 20 children with ASD (16 boys and 4 girls) at the Semarang Public Special School with an age ranging from 4 to 13 years (mean 10.9 ± 2.26 years), who were randomly assigned into two groups. The experiment consisted of group I who used the AHMPS inflatable wraps model and group II who used the AHMPS manual pull model. Heart rate (HR) and skin conductance (SC) were analyzed to measure the physiological calming effect using pulse oximeter oximetry and a galvanic skin response (GSR) sensor. Heart rate was significantly decreased during the treatment compared to the baseline (pre-test) session in group I (inflating wrap model) with p = 0.019, while no change of heart rate variability (HRV) was found in group II (manual pull model) with p = 0.111. There was no remaining effect of deep pressure using the HRV indicator after the treatment in both groups (group I with p = 0.159 and group II with p = 0.566). GSR captured the significant decrease in skin conductance during the treatment with p < 0.0001 in group I, but no significant decrease was recorded in group II with p = 0.062. A skin conductance indicator captured the remaining effect of deep pressure (after the treatment); it was better in group I (p = 0.003) than in group II (p = 0.773). In conclusion, the deep pressure of the AHMPS inflating wrap decreases physiological arousal in children with ASD during traveling.

Journal ArticleDOI
TL;DR: In this article , a review focused on the mcl-PHA production, using various carbon (organic/inorganic) sources and at different operation modes (continuous, batch, fed-batch, and high-cell density).
Abstract: Synthetic plastics derived from fossil fuels—such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene—are non-degradable. A large amount of plastic waste enters landfills and pollutes the environment. Hence, there is an urgent need to produce biodegradable plastics such as polyhydroxyalkanoates (PHAs). PHAs have garnered increasing interest as replaceable materials to conventional plastics due to their broad applicability in various purposes such as food packaging, agriculture, tissue-engineering scaffolds, and drug delivery. Based on the chain length of 3-hydroxyalkanoate repeat units, there are three types PHAs, i.e., short-chain-length (scl-PHAs, 4 to 5 carbon atoms), medium-chain-length (mcl-PHAs, 6 to 14 carbon atoms), and long-chain-length (lcl-PHAs, more than 14 carbon atoms). Previous reviews discussed the recent developments in scl-PHAs, but there are limited reviews specifically focused on the developments of mcl-PHAs. Hence, this review focused on the mcl-PHA production, using various carbon (organic/inorganic) sources and at different operation modes (continuous, batch, fed-batch, and high-cell density). This review also focused on recent developments on extraction methods of mcl-PHAs (solvent, non-solvent, enzymatic, ultrasound); physical/thermal properties (Mw, Mn, PDI, Tm, Tg, and crystallinity); applications in various fields; and their production at pilot and industrial scales in Asia, Europe, North America, and South America.

Journal ArticleDOI
TL;DR: This article reviews the traditional and emerging nucleic acid detection approaches, immunodiagnostics, whole-particle detection, and imaging-based MPXV detection techniques, and provides recommended solutions to the problems.
Abstract: The outbreak of the monkeypox virus (MPXV) in non-endemic countries is an emerging global health threat and may have an economic impact if proactive actions are not taken. As shown by the COVID-19 pandemic, rapid, accurate, and cost-effective virus detection techniques play a pivotal role in disease diagnosis and control. Considering the sudden multicountry MPXV outbreak, a critical evaluation of the MPXV detection approaches would be a timely addition to the endeavors in progress for MPXV control and prevention. Herein, we evaluate the current MPXV detection methods, discuss their pros and cons, and provide recommended solutions to the problems. We review the traditional and emerging nucleic acid detection approaches, immunodiagnostics, whole-particle detection, and imaging-based MPXV detection techniques. The insights provided in this article will help researchers to develop novel techniques for the diagnosis of MPXV.

Journal ArticleDOI
TL;DR: In this paper , a review of current PET recycling methods to improve life cycle and waste management are discussed, which can be further implemented to reduce plastics pollution and its impacts on health and environment.
Abstract: Polyethylene terephthalate (PET) is one of the most commonly used polyester plastics worldwide but is extremely difficult to be hydrolyzed in a natural environment. PET plastic is an inexpensive, lightweight, and durable material, which can readily be molded into an assortment of products that are used in a broad range of applications. Most PET is used for single-use packaging materials, such as disposable consumer items and packaging. Although PET plastics are a valuable resource in many aspects, the proliferation of plastic products in the last several decades have resulted in a negative environmental footprint. The long-term risk of released PET waste in the environment poses a serious threat to ecosystems, food safety, and even human health in modern society. Recycling is one of the most important actions currently available to reduce these impacts. Current clean-up strategies have attempted to alleviate the adverse impacts of PET pollution but are unable to compete with the increasing quantities of PET waste exposed to the environment. In this review paper, current PET recycling methods to improve life cycle and waste management are discussed, which can be further implemented to reduce plastics pollution and its impacts on health and environment. Compared with conventional mechanical and chemical recycling processes, the biotechnological recycling of PET involves enzymatic degradation of the waste PET and the followed bioconversion of degraded PET monomers into value-added chemicals. This approach creates a circular PET economy by recycling waste PET or upcycling it into more valuable products with minimal environmental footprint.

Journal ArticleDOI
TL;DR: Preliminary results suggest that FCG can provide accurate AO timings and pre-ejection periods (PEP) estimates, according to percentage differences lower than 5% of the mean measured PEP.
Abstract: Forcecardiography (FCG) is a novel technique that measures the local forces induced on the chest wall by the mechanical activity of the heart. Specific piezoresistive or piezoelectric force sensors are placed on subjects’ thorax to measure these very small forces. The FCG signal can be divided into three components: low-frequency FCG, high-frequency FCG (HF-FCG) and heart sound FCG. HF-FCG has been shown to share a high similarity with the Seismocardiogram (SCG), which is commonly acquired via small accelerometers and is mainly used to locate specific fiducial markers corresponding to essential events of the cardiac cycle (e.g., heart valves opening and closure, peaks of blood flow). However, HF-FCG has not yet been demonstrated to provide the timings of these markers with reasonable accuracy. This study addresses the detection of the aortic valve opening (AO) marker in FCG signals. To this aim, simultaneous recordings from FCG and SCG sensors were acquired, together with Electrocardiogram (ECG) recordings, from a few healthy subjects at rest, both during quiet breathing and apnea. The AO markers were located in both SCG and FCG signals to obtain pre-ejection periods (PEP) estimates, which were compared via statistical analyses. The PEPs estimated from FCG and SCG showed a strong linear relationship (r > 0.95) with a practically unit slope, and 95% of their differences were found to be distributed within ± 4.6 ms around small biases of approximately 1 ms, corresponding to percentage differences lower than 5% of the mean measured PEP. These preliminary results suggest that FCG can provide accurate AO timings and PEP estimates.

Journal ArticleDOI
TL;DR: The preoperative data of 1082 patients were used to further extend the previous research and to generate several models that are capable of predicting the overall LOS, and the most accurate algorithm was the radial basis function network, at 83.5%.
Abstract: Fractures of the femur are a frequent problem in elderly people, and it has been demonstrated that treating them with a diagnostic–therapeutic–assistance path within 48 h of admission to the hospital reduces complications and shortens the length of the hospital stay (LOS). In this paper, the preoperative data of 1082 patients were used to further extend the previous research and to generate several models that are capable of predicting the overall LOS: First, the LOS, measured in days, was predicted through a regression analysis; then, it was grouped by weeks and was predicted with a classification analysis. The KNIME analytics platform was applied to divide the dataset for a hold-out cross-validation, perform a multiple linear regression and implement machine learning algorithms. The best coefficient of determination (R2) was achieved by the support vector machine (R2 = 0.617), while the mean absolute error was similar for all the algorithms, ranging between 2.00 and 2.11 days. With regard to the classification analysis, all the algorithms surpassed 80% accuracy, and the most accurate algorithm was the radial basis function network, at 83.5%. The use of these techniques could be a valuable support tool for doctors to better manage orthopaedic departments and all their resources, which would reduce both waste and costs in the context of healthcare.

Journal ArticleDOI
TL;DR: This review intends to highlight the recent advances in nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress receptors of epidermal growth factors.
Abstract: Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. However, these products were designed initially for generic anticancer purposes and not specifically for BC treatment. With a better understanding of the molecular biology of BC, several novel and promising nanotherapeutic strategies and devices have been developed in recent years. In this context, multi-functionalized nanostructures are becoming potential carriers for enhanced chemotherapy in BC patients. To design these nanostructures, a wide range of materials, such as proteins, lipids, polymers, and hybrid materials, can be used and tailored for specific purposes against BC. Selective targeting of BC cells results in the activation of programmed cell death in BC cells and can be considered a promising strategy for managing triple-negative BC. Currently, conventional BC screening methods such as mammography, digital breast tomosynthesis (DBT), ultrasonography, and magnetic resonance imaging (MRI) are either costly or expose the user to hazardous radiation that could harm them. Therefore, there is a need for such analytical techniques for detecting BC that are highly selective and sensitive, have a very low detection limit, are durable, biocompatible, and reproducible. In detecting BC biomarkers, nanostructures are used alone or in conjunction with numerous molecules. This review intends to highlight the recent advances in nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress receptors of epidermal growth factors. Researchers may gain insight from these strategies to design and develop more tailored nanomedicine for BC to achieve further improvements in cancer specificity, antitumorigenic effects, anti-metastasis effects, and drug resistance reversal effects.

Journal ArticleDOI
TL;DR: The non-classic origins, biosynthesis, and extraction of exosomes are summarized, modification and delivery techniques are described, their role in OA pathogenesis and progression is explored, and their therapeutic potential and hurdles to overcome are discussed.
Abstract: Osteoarthritis (OA) is a prevalent and debilitating age-related joint disease characterized by articular cartilage degeneration, synovial membrane inflammation, osteophyte formation, as well as subchondral bone sclerosis. OA drugs at present are mainly palliative and do not halt or reverse disease progression. Currently, no disease-modifying OA drugs (DMOADs) are available and total joint arthroplasty remains a last resort. Therefore, there is an urgent need for the development of efficacious treatments for OA management. Among all novel pharmaco-therapeutical options, exosome-based therapeutic strategies are highly promising. Exosome cargoes, which include proteins, lipids, cytokines, and various RNA subtypes, are potentially capable of regulating intercellular communications and gene expression in target cells and tissues involved in OA development. With extensive research in recent years, exosomes in OA studies are no longer limited to classic, mesenchymal stem cell (MSC)-derived vesicles. New origins, structures, and functions of exosomes are constantly being discovered and investigated. This review systematically summarizes the non-classic origins, biosynthesis, and extraction of exosomes, describes modification and delivery techniques, explores their role in OA pathogenesis and progression, and discusses their therapeutic potential and hurdles to overcome in OA treatment.

Journal ArticleDOI
TL;DR: A broad review of genome editing applications in horticulture crops to improve post-harvest stability traits such as shelf life, texture, and resistance to pathogens without compromising nutritional value is provided in this paper .
Abstract: Food security and crop production are challenged worldwide due to overpopulation, changing environmental conditions, crop establishment failure, and various kinds of post-harvest losses. The demand for high-quality foods with improved nutritional quality is also growing day by day. Therefore, production of high-quality produce and reducing post-harvest losses of produce, particularly of perishable fruits and vegetables, are vital. For many decades, attempts have been made to improve the post-harvest quality traits of horticultural crops. Recently, modern genetic tools such as genome editing emerged as a new approach to manage and overcome post-harvest effectively and efficiently. The different genome editing tools including ZFNs, TALENs, and CRISPR/Cas9 system effectively introduce mutations (In Dels) in many horticultural crops to address and resolve the issues associated with post-harvest storage quality. Henceforth, we provide a broad review of genome editing applications in horticulture crops to improve post-harvest stability traits such as shelf life, texture, and resistance to pathogens without compromising nutritional value. Moreover, major roadblocks, challenges, and their possible solutions for employing genome editing tools are also discussed.

Journal ArticleDOI
TL;DR: The anatomy and key cells of these four primary drug delivery routes as well as the interface between drug and drug delivery systems and the anatomy are explored, reviewing the recent developments and current state of research in each area.
Abstract: Ocular drug delivery remains the focus of much modern research. Primary routes of administration include the surface, the intravitreal space, the subretinal space, and the subconjunctival space, each with its own series of unique challenges, limitations, and advantages. Each of these approaches requires careful consideration of the local anatomy, physical barriers, and key cells as well as the interface between the anatomy and the drug or drug system being delivered. While least invasive, the topical route poses a challenge with the many physical barriers that prevent drug penetration into the eye; while injection into the intravitreal, subretinal, and subconjunctival spaces are direct and targeted but limited due to the many internal clearance mechanisms and potential for damage to the eye. Polymeric-based, sustained-release drug delivery systems have been identified as a potential solution to many of these challenges; however, the design and successful implementation of a sustained-release system that is well-tolerated, bioactive, biocompatible, and degradable remains, in many cases, only in the early stages. The drugs and biomaterials in question also require special attention as small chemical changes could result in vastly different outcomes. This paper explores the anatomy and key cells of these four primary drug delivery routes as well as the interface between drug and drug delivery systems and the anatomy, reviewing the recent developments and current state of research in each area. Finally, this paper also examines the frequently used drugs and biomaterials found in ocular drug delivery and summarizes the primary interactions observed.

Journal ArticleDOI
TL;DR: A new reconstructive surgical method in hidradenitis suppurativa surgery: the use of a co-graft of Acellular dermal matrix and split thickness skin graft as a novel method in wound closure after wide excisions, based on two cases is presented.
Abstract: Hidradenitis suppurativa is a chronic disease that significantly reduces patients’ quality of life. Patients are chronically treated with systemic therapies, which are often ineffective. Surgical treatment for severe cases of hidradenitis suppurativa is one option for affected patients. Surgical treatment has its limitations, and wound closure may be particularly problematic. This requires the use of reconstructive techniques. The methods of choice for wound closure are split-thickness skin grafts or local flaps reconstructions. However, each method has its limitations. This is a presentation of a new reconstructive surgical method in hidradenitis suppurativa surgery: the use of a co-graft of Acellular dermal matrix and split thickness skin graft as a novel method in wound closure after wide excisions, based on two cases. The results of this method are very promising: we achieved very fast wound closure with good aesthetic results regarding scar formation. In this paper, we used several examinations: laser speckle analysis, cutometer tests, and health-related quality of life (QoL) questionnaire to check the clinical impact of this method. Our initial results are very encouraging. ADM with STSG as a co-graft could be widely used in reconstructive surgery. This is a preliminary study, which should be continued in further, extended research.

Journal ArticleDOI
TL;DR: In this article , a green, economical and eco-friendly strategy was used to synthesize silver/iron oxide nanocomposites (Ag/Fe2O3) using the extract of Buddleja lindleyana.
Abstract: In the study reported in this manuscript, silver/iron oxide nanocomposites (Ag/Fe2O3) were phytosynthesized using the extract of Buddleja lindleyana via a green, economical and eco-friendly strategy. The biosynthesized Ag/Fe2O3 nanocomposites were characterized using UV-Vis spectrophotometry, FTIR, XRD, TEM, DLS and SEM-EDX analyses. The particulates showed a triangular and spherical morphology having sizes between 25 and 174 nm. FTIR studies on the nanoparticles showed functional groups corresponding to organic metabolites, which reduce and stabilize the Ag/Fe2O3 nanocomposite. The antimicrobial efficacy of the phytosynthesized Ag/Fe2O3 against bacterial pathogens was assessed. In addition, Ag/Fe2O3 exhibited broad spectrum activities against B. subtilis, S. aureus, E. coli, and P. aeruginosa with inhibition zones of 23.4 ± 0.75, 22.3 ± 0.57, 20.8 ± 1.6, and 19.5 ± 0.5 mm, respectively. The Ag/Fe2O3 composites obtained showed promising antibacterial action against human bacterial pathogens (S. aureus, E. coli, B. subtilis and P. aeruginosa), making them candidates for medical applications.

Journal ArticleDOI
TL;DR: The state of the art in COC models are reviewed with a focus on the microphysiological systems that host multicellular 3D tissue engineering models and can help elucidate the complex biology of TME and cancer growth and progression.
Abstract: Organ on chip (OOC) has emerged as a major technological breakthrough and distinct model system revolutionizing biomedical research and drug discovery by recapitulating the crucial structural and functional complexity of human organs in vitro. OOC are rapidly emerging as powerful tools for oncology research. Indeed, Cancer on chip (COC) can ideally reproduce certain key aspects of the tumor microenvironment (TME), such as biochemical gradients and niche factors, dynamic cell–cell and cell–matrix interactions, and complex tissue structures composed of tumor and stromal cells. Here, we review the state of the art in COC models with a focus on the microphysiological systems that host multicellular 3D tissue engineering models and can help elucidate the complex biology of TME and cancer growth and progression. Finally, some examples of microengineered tumor models integrated with multi-organ microdevices to study disease progression in different tissues will be presented.

Journal ArticleDOI
TL;DR: This review is to present the most reliable flavonoids-based delivery systems developed for anticancer therapies and the progress accomplished, with a special focus on cervical cancer therapy, and highlights the relevance of delivery systems application.
Abstract: Cancer is the second leading cause of death worldwide. Cervical cancer, for instance, is considered a major scourge in low-income countries. Its development is mostly associated with the human papillomavirus persistent infection and despite the availability of preventive vaccines, they are only widely administered in more developed countries, thus leaving a large percentage of unvaccinated women highly susceptible to this type of cancer. Current treatments are based on invasive techniques, being far from effective. Therefore, the search for novel, advanced and personalized therapeutic approaches is imperative. Flavonoids belong to a group of natural polyphenolic compounds, well recognized for their great anticancer capacity, thus promising to be incorporated in cancer therapy protocols. However, their use is limited due to their low solubility, stability and bioavailability. To surpass these limitations, the encapsulation of flavonoids into delivery systems emerged as a valuable strategy to improve their stability and bioavailability. In this context, the aim of this review is to present the most reliable flavonoids-based delivery systems developed for anticancer therapies and the progress accomplished, with a special focus on cervical cancer therapy. The gathered information revealed the high therapeutic potential of flavonoids and highlights the relevance of delivery systems application, allowing a better understanding for future studies on effective cancer therapy.

Journal ArticleDOI
TL;DR: Overall, this work established a strategy to manufacture 3D bio-/printed scaffolds through the formulation of novel bioinks with potential applications in tissue engineering and cellular agriculture through the manufacturing of complex 3D structures.
Abstract: Novel green materials not sourced from animals and with low environmental impact are becoming increasingly appealing for biomedical and cellular agriculture applications. Marine biomaterials are a rich source of structurally diverse compounds with various biological activities. Kappa-carrageenan (κ-c) is a potential candidate for tissue engineering applications due to its gelation properties, mechanical strength, and similar structural composition of glycosaminoglycans (GAGs), possessing several advantages when compared to other algae-based materials typically used in bioprinting such as alginate. For those reasons, this material was selected as the main polysaccharide component of the bioinks developed herein. In this work, pristine κ-carrageenan bioinks were successfully formulated for the first time and used to fabricate 3D scaffolds by bioprinting. Ink formulation and printing parameters were optimized, allowing for the manufacturing of complex 3D structures. Mechanical compression tests and dry weight determination revealed young’s modulus between 24.26 and 99.90 kPa and water contents above 97%. Biocompatibility assays, using a mouse fibroblast cell line, showed high cell viability and attachment. The bioprinted cells were spread throughout the scaffolds with cells exhibiting a typical fibroblast-like morphology similar to controls. The 3D bio-/printed structures remained stable under cell culture conditions for up to 11 days, preserving high cell viability values. Overall, we established a strategy to manufacture 3D bio-/printed scaffolds through the formulation of novel bioinks with potential applications in tissue engineering and cellular agriculture.

Journal ArticleDOI
TL;DR: This paper presents a review of the various types of COVID-19 detection methods, diagnostic technologies, and surveillance approaches that have been used or proposed and should be beneficial to researchers in this field and health policymakers at large.
Abstract: As of 27 December 2021, SARS-CoV-2 has infected over 278 million persons and caused 5.3 million deaths. Since the outbreak of COVID-19, different methods, from medical to artificial intelligence, have been used for its detection, diagnosis, and surveillance. Meanwhile, fast and efficient point-of-care (POC) testing and self-testing kits have become necessary in the fight against COVID-19 and to assist healthcare personnel and governments curb the spread of the virus. This paper presents a review of the various types of COVID-19 detection methods, diagnostic technologies, and surveillance approaches that have been used or proposed. The review provided in this article should be beneficial to researchers in this field and health policymakers at large.