scispace - formally typeset
Search or ask a question

Showing papers in "Bulletin of Volcanology in 1989"


Journal ArticleDOI
TL;DR: In this paper, an improved empirical method for the plotting of field data and the calculation of tephra fall volumes is presented, where two new quantitative parameters are proposed which describe the rates of thinning of the deposit (bt the thickness half distance) and the maximum clast size (bc the clast half distance).
Abstract: An improved empirical method for the plotting of field data and the calculation of tephra fall volumes is presented. The widely used “area” plots of ln(thickness) against ln(isopach area) are curved, implying an exponential thinning law. Use of ln(thickness)−(area)1/2 diagrams confirm the exponential dependence of many parameters (e.g. thickness, maximum and median clast size) with distance from source, producing linear graphs and allowing volumes to be calculated without undue extrapolation of field data. The agreement between theoretical models of clast dispersion and observation is better than previously thought. Two new quantitative parameters are proposed which describe the rates of thinning of the deposit (bt the thickness half-distance) and the maximum clast size (bc the clast half-distance). Many deposits exhibit different grainsize and thickness thinning rates, with the maximum clast size diminishing 1–3 times slower than the thickness. This implies that the entrained grainsize population influences the morphologic and granulometric patterns of the resulting deposit, in addition to the effects of column height and wind-speed. The grainsize characteristics of a deposit are best described by reference to the half-distance ratio (bc/bt). A new classification scheme is proposed which plots the half-distance ratio against the thickness half-distance and may be contoured in terms of the column height.

704 citations


Journal ArticleDOI
TL;DR: In this article, the vesicularity of juvenile clasts in pyroclastic deposits is measured for the 16-32 mm size fraction by water immersion techniques and converted to vesicleities using measured dense-rock equivalent densities.
Abstract: The vesicularity of juvenile clasts in pyroclastic deposits gives information on the relative timing of vesiculation and fragmentation, and on the role of magmatic volatiles versus external water in driving explosive eruptions. The vesicularity index and range are defined as the arithmetic mean and total spread of vesicularity values, respectively. Clast densities are measured for the 16–32 mm size fraction by water immersion techniques and converted to vesicularities using measured dense-rock equivalent densities. The techniques used are applied to four case studies involving magmas of widely varying viscosities and discharge rates: Kilauea Iki 1959 (basalt), Eifel tuff rings (basanite), Mayor Island cone-forming deposits (peralkaline rhyolite) and Taupo 1800 B.P. (calc-alkaline rhyolite). Previous theoretical studies suggested that a spectrum of clast vesicularities should be seen, depending on the magma viscosity, eruption rate, and the presence and timing of magma: water interaction. The new data are consistent with these predictions. In magmatic “dry” eruptions the vesicularity index lies uniformly in the range 70%–80% regardless of magma viscosity. For high viscosities and eruption rates the vesicularity ranges are narrow (< 25%), but broaden to between 30% and 50% as the viscosity and eruption rates are lowered and the volatiles and magma can de-couple. In phreatomagmatic “wet” eruptions, widely varying clast vesicularities reflect complex variations in the relative timing of vesiculation and water-induced fragmentation. Magma:water interaction at an early stage greatly reduces the vesicularity indices (< 40%) and broadens the ranges (as high as 80%), whereas late-stage interaction has only a minor effect on the index and broadens the range to a limited extent. Clast vesicularity represents a useful third parameter in addition to dispersal and fragmentation to characterise pyroclastic deposits.

519 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used a model of pyroclast fallout from eruption columns to estimate peak intensities (magma discharge rate) of 45 Pleistocene and Holocene plinian eruptions.
Abstract: Peak intensities (magma discharge rate) of 45 Pleistocene and Holocene plinian eruptions have been inferred from lithic dispersal patterns by using a theoretical model of pyroclast fallout from eruption columns. Values range over three orders of magnitude from 1.6 × 106 to 1.1 × 109 kg/s. Magnitudes (total erupted mass) also vary over about three orders of magnitude from 2.0 × 1011 to 6.8 × 1014 kg and include several large ignimbrite-forming events with associated caldera formation. Intensity is found to be positively correlated with the magnitude when total erupted mass (tephra fall, surges and pyroclastic flows) is considered. Initial plinian fall phases with intensities in excess of 2.0 × 108 kg/s typically herald the onset of major pyroclastic flow generation and subsequent caldera collapse. During eruptions of large magnitude, the transition to pyroclastic flows is likely to be the result of high intensity, whereas the generation of pyroclastic flows in small magnitude eruptions may occur more often by reduction of magmatic volatile content or some transient change in magma properties. The correlation between plinian fall intensity and total magnitude suggests that the rate of magma discharge is related to the size of the chamber being tapped. A simple model is presented to account for the variation in intensity by progressive enlargement of conduits and vents and excess pressure at the chamber roof caused by buoyant forces acting on the chamber as it resides in the crust. Both processes are fundamentally linked to the absolute size of the pre-eruption reservoir. The data suggest that sustained eruption column heights (i.e. magma discharge rates) are indicators of eventual eruption magnitude, and perhaps eruptive style, and thus are key parameters to monitor in order to assess the temporal evolution of plinian eruptions.

247 citations


Journal ArticleDOI
TL;DR: A study of pyroclastic deposits from the 1815 Tambora eruption reveals two distinct phases of activity, i.e., four initial tephra falls followed by generation of pyproclastic flows and the production of major co-ignimbrite ash fall as mentioned in this paper.
Abstract: A study of pyroclastic deposits from the 1815 Tambora eruption reveals two distinct phases of activity, i.e., four initial tephra falls followed by generation of pyroclastic flows and the production of major co-ignimbrite ash fall. The first explosive event produced minor ash fall from phreatomagmatic explosions (F-1 layer). The second event was a Plinian eruption (F-2) correlated to the large explosion of 5 April 1815, which produced a column height of 33 km with an eruption rate of 1.1 × 108 kg/s. The third event occurred during the lull in major activity from 5 to 10 April and produced minor ash fall (F-3). The fourth event produced a 43-km-high Plinian eruption column with an eruption rate of 2.8 × 108 kg/s during the climax of activity on 10 April. Although very energetic, the Plinian events were of short duration (2.8 h each) and total erupted volume of the early (F-1 to F-4) fall deposits is only 1.8 km3 (DRE, dense rock equivalent). An abrupt change in style of activity occurred at end of the second Plinian event with onset of pyroclastic flow and surge generation. At least seven pyroclastic flows were generated, which spread over most of the volcano and Sanggar peninsula and entered the ocean. The volume of pyroclastic flow deposits on land is 2.6 km3 DRE. Coastal exposures show that pyroclastic flows entering the sea became highly fines depleted, resulting in mass loss of about 32%, in addition to 8% glass elutriation, as indicated by component fractionation. The subaqueous pyroclastic flows have thus lost about 40% of mass compared to the original erupted mixture. Pyroclastic flows and surges from this phase of the eruption are stratigraphically equivalent to a major ash fall deposit (F-5) present beyond the flow and surge zone at 40 km from the source and in distal areas. The F-5 fall deposit forms a larger proportion of the total tephra fall with increasing distance from source and represents about 80% of the total at a distance of 90 km and 92% of the total tephra fall from the 1815 eruption. The field relations indicate that the 20-km3 (DRE) F-5 deposit is a co-ignimbrite ash fall, generated largely during entrance of pyroclastic flows into the ocean. Based on the observed 40% fines depletion and component fractionation from the flows, the large volume of the F-5 co-ignimbrite ash requires eruption of 50 km3 (DRE, 1.4 × 1014 kg) pyroclastic flows.

205 citations


Journal ArticleDOI
Abstract: Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions.

182 citations


Journal ArticleDOI
TL;DR: In this paper, historical records of volcanic eruptions at snow-clad volcanoes show the most common volcanic events that generate lahars and floods are: (1) Flowing pyroclastic debris, (2) Pyroclastic flows and surges, and (3) Tephra falls, which can alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahar and floods.
Abstract: Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3.

173 citations


Journal ArticleDOI
TL;DR: In this paper, the transition from volcanic (dome) to plutonic (intrusion) textures in a silicic magma system has been examined at the 600-year-old Obsidian Dome volcano.
Abstract: Samples obtained by U.S. Department of Energy research drilling at the 600-year-old Obsidian Dome volcano provide the rare opportunity to examine the transition from volcanic (dome) to plutonic (intrusion) textures in a silicic magma system. Textures in the lavas from Obsidian Dome record multiple periods of crystallization initiated in response to changes in undercooling (ΔT) related to variable degassing in the mag-ma. Phenocr)ysts formed first at low ΔT. A drastic increase in ΔT, related to loss of a vapor phase during initial stages of eruption, caused nucleation of microlites. All of the lavas thus contain phenocrysts and microlites. Extrusion and subsequent devitrification of the dry (0.1 wt% H2O) magma crystallized spherulites and fine-grained rhyolite at high ΔT. A granophyric texture, representing crystallization at a moderate ΔT, formed in the intrusions beneath Obsidian Dome. Textures in the intrusion apparently represent crystallization of hydrous (1–2 wt% H2O) rhyolitic magma at shallow depths.

167 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the volatile behavior of melt inclusions trapped in the phenocrysts and those of the whole rocks and the matrix glasses of the 1763 eruption of Etna.
Abstract: Crystallization paths of basaltic (1763 eruption) and hawaiitic (1865 and 1329 eruptions) scoria from Etna were deduced from mineralogy and melt inclusion chemistry. The volatile behaviour was investigated through the study of melt inclusions trapped in the phenocrysts and those of the whole rocks and the matrix glasses. The results from the 1763 eruption point to the early crystallization of olivine Fo 81.7 from a water-rich alkaline basalt, with high Cl (1750–2000 ppm) and S (2100–2400 ppm) concentrations. The hawaiitic melt inclusions trapped in olivine Fo 74, salite and plagioclase are characterized by a decrease in Cl/K2O and S/K2O ratios. In each investigated system there is good correlation between K2O and P2O5. In the whole rocks, Cl ranges from 980 to 1680 ppm, from basaltic to hawaiitic lavas, whereas S (110–136 ppm) remains low. Cl and S behaviour in the 1763 magma suggests an early degassing stage of Cl and S, with CO2 and a water-rich gaseous phase for a pressure close to 100 MPa, consistent with a permanent outgassing at the summit craters of Etna. During the eruption, the sulphur remaining in the hawaiitic liquid is lost, and the degassing of chlorine is limited. Such a degassing model can be extended to the 1865 and 1329a.d. eruptions.

152 citations


Journal ArticleDOI
TL;DR: A detailed stratigraphical, petrological and geochemical investigation on the island of Stromboli, Aeolian arc, Southern Tyrrhenian sea was conducted in this paper.
Abstract: The present paper reports the results of a detailed stratigraphical, petrological and geochemical investigation on the island of Stromboli, Aeolian arc, Southern Tyrrhenian sea. Major and trace element data determined on a large quantity of samples from well-established stratigraphic positions indicate that the magmatological evolution of the island through time was more complex than previously known. The activity of the exposed part of Stromboli, which occurred over a time span of about 100 000 years, started with the emission of high-K calc-alkaline (HKCA) volcanics, which were covered by calc-alkaline (CA), shoshonitic (SHO), high-K calc-alkaline (HKCA) and potassic (KS) products. The most recent activity consists of HKCA lavas and the present-day SHO-basaltic volcanics emitted by mildly explosive “strombolian” activity. Most of the products are lavas, with minor amounts of pyroclastic rocks emplaced mainly during the early stages of activity. The transition from the SHO to the KS cycle was associated with the collapse of the upper part of the volcanic apparatus; the transition from KS to the present-day SHO activity has been found to have occurred at the time of the sliding of the western portion of the volcano that generated the “Sciara del Fuoco” depression. The rock series cropping out at Stromboli show variable enrichment in potassium, incompatible trace elements and radiogenic Sr which increase from CA through HKCA, and SHO up to KS rocks. Major, trace element and Sr-isotopic data agree in indicating that the HKCA and SHO series evolved by crystal/liquid fractionation starting from different parental liquids, whereas crustal assimilation appears to have been the leading process during the evolution of KS volcanics. Mixing processes also played a role although they can be well documented only when they occurred between magmas with different isotopic and geochemical characteristics. Geochemical modelling based on trace element and isotopic data indicates that the mafic magmas of the different volcanic series may be generated by melting of an upper mantle heterogeneously enriched in incompatible elements and radiogenic Sr by addition, via subduction, of different amounts of crustal material. Geochemical data, however, are also in agreement with the alternative hypothesis that the most mafic magmas of the different series have been generated by combined processes of fractional crystallization, assimilation and mixing of a CA magma in a deep-sited magma chamber; the mafic magmas formed by these complex processes were successively emplaced in a shallow reservoir where they evolved by simple fractional crystallization (HKCA and SHO series) and by assimilation of crustal material (KS). The occurrence of changes in the geochemical signatures of the magmas at the time of the structural modification of the volcano is believed to favour the hypothesis that the variable composition observed in the volcanic rocks of Stromboli is the result of processes occurring within the volcanic system.

145 citations


Journal ArticleDOI
TL;DR: The rothenberg scoria cone Eifel formed by an alternation of three Strombolian and three phreatomagmatic eruptive phases was studied in this article.
Abstract: Rothenberg scoria cone Eifel formed by an alternation of three Strombolian and three phreatomagmatic eruptive phases. Eruptions took place from up to six vents on a 600 m-long fissure, building an early tuff ring and then two coalescing scoria cones. Strombolian volcanism dominated volumetrically, as the supply of external water was severely limited. Magma/water interaction only occurred during the opening stages of eruption at any vent, when discharge rates were low and the fragmentation surface was below the water table. The phreatomagmatic deposits consist of relatively well-sorted fall beds and only minor surge deposits. They contain juvenile clasts with a wide range of vesicularity and grain size, implying considerable heterogeneity in the assemblage of material ejected by the phreatomagmatic explosions. the transition from phreatomagmatic to Strombolian eruption at any vent was rapid and irreversible, and Strombolian volcanism persisted even when eruption rates are inferred to have waned at the close of each eruptive phase as, by then, the fragmentation surfaces were high in the growing cones and water was denied access to the magma. The Strombolian deposits are relatively homogenous, consisting of alternating coarser- and finer-grained, well-sorted fall beds erupted during periods of open-vent eruption and partial blockage of the vent respectively. The intervals of Strombolian eruption were always a delicate balance between discharge of freely degassing magma and processes such as ponding of degassed magma in the vent, collapse of the growing cones, and repeated recycling of clasts through the vent. Clear evidence of the instability of the Rothenberg cones is preserved in numerous unconformities within deposits of the inner walls of the cones. The close of Strombolian phases was probably marked by a decreasing supply of magma to the vents accompanied by ponding and stagnation of lava in the craters.

108 citations


Journal ArticleDOI
TL;DR: In this article, the authors identify 42 submarine volcanos in the Mariana and Volcano Arcs, and observe their activity and sample characteristics indicate 22 of these to be active or dormant.
Abstract: Narrow-beam maps, selected dredge samplings, and surveys of the Mariana and Volcano Arcs identify 42 submarine volcanos. Observed activity and sample characteristics indicate 22 of these to be active or dormant. Edifices in the Volcano Arc are larger than most of the Mariana Arc edifices, more irregularly shaped with numerous subsidiary cones, and regularly spaced at 50–70 km. Volcanos in the Mariana Arc tend to be simple cones. Sets of individual cones and volcanic ridges are elongate parallel to the trend of the arc or at 110° counterclockwise from that trend, suggesting a strong fault control on the distribution of arc magmas. Volcanos in the Mariana Arc are generally developed west of the frontal arc ridge, on rifted frontal arc crust or new back-arc basin crust. Volcanos in the central Mariana Arc are usually subaerial, large (> 500 km3), and spaced about 50–70 km apart. Those in the northern and southern Marianas are largely submarine, closer together, and generally less than 500 km3 in volume. There is a shoaling of the arc basement around Iwo Jima, accompanied by the appearance of incompatible-element enriched lavas with alkalic affinities. The larger volcanic edifices must reflect either a higher magma supply rate or a greater age for the larger volcanos. If the magma supply (estimated at 10–20 km3/km of arc per million years at 18° N) has been relatively constant along the Mariana Arc, we can infer a possible evolutionary sequence for arc volcanos from small, irregularly spaced edifices to large (over 1000 km3) edifices spaced at 50–70 km. The volcano distribution and basal depths are consistent with the hypothesis of back-arc propagation into the Volcano Arc.

Journal ArticleDOI
TL;DR: A well-defined pahoehoe lava type that is very common medially and distally in Hawaii is characterized by a high concentration and fairly uniform distribution of spherical or near-spherical vesicles as mentioned in this paper.
Abstract: A well-defined pahoehoe lava type that is very common medially and distally in Hawaii is characterized by a high concentration and fairly uniform distribution of spherical or near-spherical vesicles. Measurements of vesicle sizes and concentrations have been made on ten of these spongy pahoehoe lava flow-units. The vesicles increase in size toward the middle, accompanied by a moderate increase in lava porosity. The close approach to bilateral symmetry on either side of the horizontal median plane and the common occurrence of a median gas blister shows that no significant upward movement of vesicles occurred, suggesting that the lava possessed a yield strength and was more or less static. Olivine phenocrysts when present are, however, concentrated in the lower half of the same flow units, showing that the lava previously lacked a significant yield strength. The vesicles are regarded as early, inherited from the vent, but the size characteristics of the vesicle population are a late-formed feature. Vesicles grew in static lava mostly by coalescence, and it is postulated that coalescence was promoted by the presence of abundant diktytaxitic voids which punctured the walls of contiguous vesicles. Zones in which the vesicle concentration is lower and the vesicles are larger and strongly deformed interrupt the symmetry of some spongy pahoehoe units, and gas blisters higher than the median plane occur in many examples. These zones are interpreted to result from late-stage shearing, and point to a mechanism by which vesicles may be eliminated from a lava.

Journal ArticleDOI
TL;DR: In this article, the authors identify several vent areas from which hyaloclastite presumably erupted and propose a facies model for deep-sea hyalocaloclastites on seamount summits.
Abstract: New field observations with the submersible ALVIN and photographic evidence from a study of the summits of seamounts near the East Pacific Rise show that hyaloclastite deposits occur commonly. Hyaloclastite outcrops were found on six volcanoes at depths from 1240 to 2500 m. These new observations plus laboratory study of new hyaloclastite specimens extend the results of previous studies. Most of the hyaloclastite samples are of hydrovolcanic eruptive origin, but a few show evidence of a predominantly sedimentary origin. Primarily from morphology, we identify several vent areas from which hyaloclastite presumably erupted. The surface appearance of the hyaloclastite deposits varies with distance to these vents, leading us to propose a facies model for deep-sea hyaloclastites on seamount summits. Hyaloclastites of hydromagmatic origin exhibit weak normal grading and bedding-parallel alignment of platy shards. They consist of blocky, sliver and fluidal basalt glass shards and lithics in a matrix that contains pelagic sediment. The shards themselves are remarkably free of even the tiniest crystals and are usually chemically homogeneous. We propose that the shards form mainly by cooling-contraction granulation, but cannot rule out the possibility of limited steam explosivity. Hyaloclastites are closely associated with submarine pahoehoe and we propose that a very rapid eruption rate, promoting clastic-dominated versus flow-dominated eruptive behavior, is the dominant control on hyaloclastite formation. We propose that shard formation occurs during submarine lava fountaining. Gravitational instability of the resulting slurry of shards, sea water and possibly steam causes gravity flow that carries the shards outward from the vent. Further field and modelling studies are needed to test these ideas and more quantitatively constrain the ascent mechanism, eruption dynamics and deposition of deep-sea hyaloclastites.

Journal ArticleDOI
TL;DR: The Hohi volcanic zone (HVZ) in central Kyushu, Japan has been studied in this paper, where the authors show that the earliest stage of rifting occurs when vertical subsidence caused by normal faulting is compensated by filling with volcanic material.
Abstract: More than 5000 km3 of magmatic material was erupted in Pliocene-Pleistocene times in a volcano-tectonic depression, i. e., the Hohi volcanic zone (HVZ) in central Kyushu, Japan. The eruptive deposits consist mainly of andesite lava flows and large-scale pyroclastic-flow deposits. Their eruptions were accompanied by the formation of an EW-oriented graben (70 km × 45 km) under regional NS extensional stress. Pre-Tertiary basement rocks are absent on the surface of the graben but occur at depth, having subsided up to 3 km. Radiometric ages of volcanic rocks on the surface show zoned isochrons from 5 Ma at the margin to 0.3 Ma in the center of the HVZ. The youngest center of age zonation coincides with a 30 mgal negative Bouguer gravity anomaly. Radiometric ages of rocks from drill cores are older toward the bottom of the graben, reaching a maximum of at least 4 Ma. Volcanic activity concentrated over time toward the center of the graben and buried successively erupted material. Areas of active volcanism in the HVZ became smaller and changed in style during the 5-Ma history of activity. Volcanism of the early stage (5-2 Ma) was characterized by voluminous eruptions of andesitic lava flows that formed lava plateaus and were intruded by EW-oriented feeder dikes, perhaps related to fissure eruptions. In contrast, late-stage volcanism (2-0 Ma) resulted primarily in andesitic to dacitic lava domes with features of monogenetic volcanoes produced at low eruption rates. The HVZ shows unimodal volcanism dominated by andesitic and dacitic lavas with a small amount of rhyolite and only traces of basalt; these characteristics differ from those that typify volcanism in most other extensional areas. Erupted material in the HVZ is of the calc-alkali and high-alkali tholeiite series and shows no significant chemical changes over 5 Ma, except for an increase in K2O after 1.6 Ma. The net horizontal displacement along normal faults indicates that the HVZ widened by about 10%–20% across the graben at an average rate of 0.1 cm/yr. I interpret the HVZ to be neither a pull-apart structure of the pre-Tertiary basement nor the result of propagation of the Okinawa Trough, but rather the earliest stage of rifting when vertical subsidence caused by normal faulting is compensated by filling with volcanic material.

Journal ArticleDOI
TL;DR: The behavior of a lava flow is reproduced by a two-dimensional model of a Bingham liquid flowing down a uniform slope as discussed by the authors, which is described by two rheological parameters, yield stress and viscosity, both of which are strongly temperature-dependent.
Abstract: The behaviour of a lava flow is reproduced by a two-dimensional model of a Bingham liquid flowing down a uniform slope Such a liquid is described by two rheological parameters, yield stress and viscosity, both of which are strongly temperature-dependent Assuming a flow rate and an initial temperature of the liquid at the eruption vent, the temperature decrease due to heat radiation and the consequent change in the rheological parameters are computed along the flow Both full thermal mixing and thermal unmixing are considered The equations of motion are solved analytically in the approximation of a slow downslope change of the flow parameters Flow height and velocity are obtained as functions of the distance from the eruption vent; the time required for a liquid element to reach a certain distance from the vent is also computed The gross features of observed lava flows are reproduced by the model which allows us to estimate the sensitivity of flow dynamics to changes in the initial conditions, ground slope and rheological parameters A pronounced increase in the rate of height increase and velocity decrease is found when the flow enters the Bingham regime The results confirm the observation according to which lava flows show an initial rapid advance, followed by a marked deceleration, while the final length of a flow is such that the Graetz number is in the order of a few hundreds

Journal ArticleDOI
TL;DR: Water, F, and Cl contents of melt inclusions in phenocrysts from the 2-ka-old Taupo and Hatepe plinian tephras, and the ∼22-ka old Okaia tephra from the Taupo volcanic center, New Zealand, were measured by electron and ion microprobe.
Abstract: Water, F, and Cl contents of melt inclusions in phenocrysts from the 2-ka-old Taupo and Hatepe plinian tephras, and the ∼22-ka-old Okaia tephra from the Taupo volcanic center, New Zealand, were measured by electron and ion microprobe. Major and trace element chemistry of the inclusions is similar to that of bulk rock, supporting our assumption that volatile contents of inclusions are representative of the magma in which the crystals grew. Inclusions in the 2-ka Taupo plinian tephra contain a mean of 4.3 wt% H2O, 450 ppm F, and 1700 ppm Cl; from the Hatepe plinian tephra 4.3 wt% H2O, 430 ppm F, and 1700 ppm Cl; and from the Okaia tephra 5.9 wt% H2O, 470 ppm F, and 2100 ppm Cl. Sulfur was below the detection limit of 200 ppm. The constant H2O, F and Cl from a number of stratigraphic horizons in the tephra deposits suggest that the Taupo and Hatepe plinian tephras (>8.2 km3 magma volume) were derived from a magma body that did not contain a strong volatile gradient. By inference, there is no pre-eruptive volatile difference between these plinian eruptions and a phrea-toplinian eruption which occurred between the two. Virtually no major element zonation is seen in this eruptive sequence. Although the Okaia tephra was also erupted from the Taupo volcanic center, probably from a similar vent area, its higher volatile contents and distinct composition as compared to the Taupo tephras show that it was derived from a different, and possibly deeper, magma body.

Journal ArticleDOI
TL;DR: The Surtseyan volcano is preserved on the North Otago coast, South Island, New Zealand, in the late Eocene-early Oligocene Waiareka-Deborah volcanics as mentioned in this paper.
Abstract: The relics of a small, monogenetic, continental-shelf, Surtseyan volcano are preserved on the North Otago coast, South Island, New Zealand, in the late Eocene-early Oligocene Waiareka-Deborah volcanics. The succession consists of two parts, i. e. a lower interval of bedded lapilli tuffs and lapillistones, representing the eruptive, aggradational-cone-building phase, and an upper epiclastic sequence, representing the post-eruptive degradational phase. All of the preserved succession appears to have been deposited below storm wave base. The lapilli tuffs and lappillistones are subaqueous fall deposits, modified contemporaneously by downslope grain flow and turbidity current redeposition, and perhaps by local reworking caused by turbulent thermal eddies. The absence of major discordances in the lapilli tuffs suggests that the active eruptive period was very short-lived, perhaps lasting only a few days. The epiclastic succession consists of redeposited volcanic, skeletal, lime mud and glauconitic detritus, transported by debris flows and other mass flows. The initial epiclastic unit, a debris flow, appears to represent the sector collapse of a significant part of the cone. The appearance of fossils and rounded clasts low in the epiclastic succession coincides with stabilisation of the top of the submarine volcanic edifice, development of a wave-planed top, and its colonisation by a diverse fauna. Periodic storm activity swept material off the platform, redepositing it as marginal talus ramps. Surtla, a wholly submarine satellite volcanic centre of the 1963–1967 eruptive activity of Surtsey, is an excellent modern analogue for both the eruptive and post-eruptive phases of the Bridge Point-Aorere Point volcanic centre. By analogy with Surtla, the 120 metres of lapilli tuffs and lapillistones exposed on Bridge Point and Aorere Point accumulated in only several days. The 25 metres of reworked, glauconitic and fossiliferous volcaniclastics, represent thousands of years based on the time required for glauconite to form.

Journal ArticleDOI
TL;DR: An exceptionally well-exposed, ancient, intra-arc basin in the Permian Takitimu Group of New Zealand contains 14 km of interbedded primary volcanic and marine volcaniclastic rocks of basaltic to rhyodacitic composition as discussed by the authors.
Abstract: An exceptionally well-exposed, ancient, intra-arc basin in the Permian Takitimu Group of New Zealand contains 14 km of interbedded primary volcanic and marine volcaniclastic rocks of basaltic to rhyodacitic composition. These are the products of subaerial and submarine arc volcanism and closely associated turbidite sedimentation. The Takitimu oceanic arc/basin setting formed a dynamic closed sedimentary system in which large volumes of volcaniclastic material generated at the arc was rapidly redeposited in marine basins flanking the eruptive centres. Volcanism probably included (1) moderate- to deep-water extrusion of lava and deposition of hyaloclastite, (2) extrusive and explosive eruptions from shallow marine to marginally emergent volcanoes in or on the margin of the basin, and (3) Plinian and phreato-Plinian eruptions from more distant subaerial vents along the arc. Much of the newly erupted material was rapidly transported to the adjacent marine basin by debris flows, slumping and sliding. Hemipelagic sedimentation predominated on the outer margin of the basin, infrequently interrupted by deposition of ash from the most explosive arc volcanism and the arrival of extremely dilute turbidites. Turbidite sedimentation prevailed in the remainder of the basin, producing a thick prograding volcaniclastic apron adjacent to the arc. The volcaniclastic strata closely resemble classic turbidite deposits, and show similar lateral facies variations to submarine fan deposits. Study of such sequences provides insight into poorly understood processes in modern arc-related basins.

Journal ArticleDOI
TL;DR: In this paper, thermal remanent magnetism was used to estimate the emplacement temperature of individual clasts in a Quaternary pyroclastic deposit on Santorini.
Abstract: Thermal remanent magnetism provides a method of quantitatively determining the emplacement temperature of individual lithic clasts in a volcaniclastic rock. The technique is reviewed and applied to two types of Quaternary pyroclastic deposit on Santorini. Emplacement-temperature estimates for lithic clasts from two co-ignimbrite lithic breccias (Cape Riva and Middle Pumice eruptions) range from 250°C to ≥ 580°C, showing unambiguously that the breccias were emplaced hot. Good precision on temperature estimates (about ±20°C) were obtained from the Cape Riva breccias. Lithics in a Plinian airfall deposit from the Middle Pumice eruption give less precise results because the primary magnetisation has been partly overprinted by chemical (and/or viscous) remanence, and some clasts may have rotated during compaction of the deposit. Temperatures from proximal airfall are consistent with welding of the deposit within 1.5 km from vent. Temperature estimates for lithic clasts further from vent scatter, but a falloff of temperature away from vent can be recognised if an average emplacement temperature for the whole deposit is identified at each location. The study highlights some difficulties in interpreting quantitative temperature estimates for prehistoric pyroclastic deposits.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the features of the September 16, 1986 small-volume high-intensity eruption of Lascar volcano (Chile) using remote sensing data and found that the pronounced thermal anomaly recorded on TM images in 1984 and 1985 became weaker after the eruption, and divided into several sources.
Abstract: The features of the September 16, 1986 small-volume high-intensity eruption of Lascar volcano (Chile) were investigated using remote sensing data. Ground observations and conventional geological studies provided only minor information on this event. Examinations of Landsat Thematic Mapper (TM) images showed that the pronounced thermal anomaly recorded on TM images in 1984 and 1985 became weaker after the eruption on September 16, 1986, and divided into several sources. Field investigations and images obtained by GOES confirm that the September 16 event was a short-lived volcanic eruption which produced an ash column reaching 15 km altitude. Transport occurred in the upper troposphere at speeds up to 180 km/h. Ash fall from the plume was well sorted and moderately fine-grained (MD 200 microns).

Journal ArticleDOI
TL;DR: The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes as discussed by the authors.
Abstract: The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes. Emplacement of a dike began 24 hours before the start of the eruption on 3 January 1983. Seismic and geodetic evidence indicates that the dike collided with a magma body in the rift zone. Most of the lava produced during the initial episode of the Puu Oo eruption is of hybrid composition, with petrographic and geochemical evidence of mixing magmas of highly evllved and more mafic compositions. Some olivine and plagioclase grains in the hybrid lavas show reverse zoning. Whole-rock compositional variations are linear even for normally compatible elements like Ni and Cr. Leastsquares mixing calculations yield good residuals for major and trace element analyses for magma mixing. Crystal fractionation calculations yield unsatisfactory residuals. The highly evolved magma is similar in composition to the lava from the 1977 eruption and, at one point, vents for these two eruptions are only 200 m apart. Possibly both the 1977 lava and the highly evolved component of the episode 1 Puu Oo lava were derived from a common body of rift-zone-stored magma. The more mafic mixing component may be represented by the most mafic lava from the January 1983 eruption; it shows no evidence of magma mixing. The dike that was intruded just prior to the start of the Puu Oo eruption may have acted as a hydraulic plunger causing mixing of the two rift-zone-stored magmas.

Journal ArticleDOI
TL;DR: In this article, the authors considered only a basaltic magma and derived numerical solutions of crack propagation for various stress conditions, with a constant production rate high enough to coalesce isolated cracks, and applied to different tectonic conditions.
Abstract: A system of propagating cracks may explain magma transport and the evolution of a volcano. This paper considers only a basaltic magma. The system is controlled by two boundary conditions: the stress field, and the production rate of the magma-filled cracks in the mantle. Numerical solutions of crack propagation for various stress conditions, with a constant production rate high enough to coalesce isolated cracks, were performed, and the results applied to different tectonic conditions. For the hydrostatic stress conditions, most magma-filled cracks beneath a polygenetic volcano become trapped either in the lower crust, because there the density difference between magma and the host rocks (Δρ) becomes suddenly small, compared with that in the mantle, or trapped in the upper crust, because there Δρ is near to zero. Magma traps composed of such cracks may grow into magma reservoirs if the production rate of cracks in the mantle is large. If horizontal stress with a vertical gradient is superimposed on the hydrostatic condition in the crust, that is, tensile stress which increases upward or compressional stress which increases downward, magmafilled cracks, even if the density of magma is higher than that of the crust, may ascend directly without trapping. When the crust undergoes relative tension, magma-filled cracks may become trapped. Then, the lower part of the trap may grow into a magma reservoir, while the upper part may become filled with dikes. When the production rate of cracks is small, an initial magma-filled crack can rise directly to the surface only when the stress with a gradient is superimposed as mentioned above, or when the average density in a crack decreases, owing to, for example, vesiculation of volatile components.

Journal ArticleDOI
TL;DR: In this article, a numerical model was proposed to predict the effects of rise and coalescence of gas bubbles in lava flows consistent with observed features, such as flow thickness, viscosity, volume percentage, and initial size distribution of bubbles together with a gravitational collection kernel to numerically integrate the stochastic collection equation and thereby compute a new size spectrum of bubbles after each time increment of conductive cooling of the flow.
Abstract: Gas accumulation in magma may be aided by coalescence of bubbles because large coalesced bubbles rise faster than small bubbles. The observed size distribution of gas bubbles (vesicles) in lava flows supports the concept of post-eruptive coalescence. A numerical model predicts the effects of rise and coalescence consistent with observed features. The model uses given values for flow thickness, viscosity, volume percentage of gas bubbles, and an initial size distribution of bubbles together with a gravitational collection kernel to numerically integrate the stochastic collection equation and thereby compute a new size spectrum of bubbles after each time increment of conductive cooling of the flow. Bubbles rise and coalesce within a fluid interior sandwiched between fronts of solidification that advance inward with time from top and bottom. Bubbles that are overtaken by the solidification fronts cease to migrate. The model predicts the formation of upper and lower vesicle-rich zones separated by a vesicle-poor interior. The upper zone is broader, more vesicular, and has larger bubbles than the lower zone. Basaltic lava flows in northern California exhibit the predicted zonation of vesicularity and size distribution of vesicles as determined by an impregnation technique. In particular, the size distribution at the tops and bottoms of flows is essentially the same as the initial distribution, reflecting the rapid initial solidification at the bases and tops of the flows. Many large vesicles are present in the upper vesicular zones, consistent with expected formation as a result of bubble coalescence during solidification of the lava flows. Both the rocks and model show a bimodal or trimodal size distribution for the upper vesicular zone. This polymodality is explained by preferential coalescence of larger bubbles with subequal sizes. Vesicularity and vesicle size distribution are sensitive to atmospheric pressure because bubbles expand as they decompress during rise through the flow. The ratio of vesicularity in the upper to that in the lower part of a flow therefore depends not only on bubble rise and coalescence, but also on flow thickness and atmospheric pressure. Application of simple theory to the natural basalts suggests solidification of the basalts at 1.0±0.2 atm, consistent with the present atmospheric pressure. Paleobathymetry and paleoaltimetry are possible in view of the sensitivity of vesicle size distributions to atmospheric pressure. Thus, vesicular lava flows can be used to crudely estimate ancient elevations and/or sea level air pressure.

Journal ArticleDOI
TL;DR: In this article, magnetic susceptibility (AMS) measurements on welded ignimbrites have been used to determine the relative abundances of fiamme, matrix and lithics within individual drilled cores.
Abstract: Consideration of published anisotropy of magnetic susceptibility (AMS) studies on welded ignimbrites suggests that AMS fabrics are controlled by groundmass microlites distributed within the existing tuff fabric, the sum result of directional fabrics imposed by primary flow lineation, welding, and (if relevant) rheomorphism. AMS is a more sensitive indicator of fabric elements within welded tuffs than conventional methods, and usually yields primary flow azimuth estimates. Detailed study of a single densely welded tuff sample demonstrates that the overall AMS fabric is insensitive to the relative abundances of fiamme, matrix and lithics within individual drilled cores. AMS determinations on a welded-tuff dyke occurring in a choked vent in the Trans-Pecos Texas volcanic field reveals a consistent fabric with a prolate element imbricated with respect to one wall of the dyke, while total magnetic susceptibility and density exhibit axially symmetric variations across the dyke width. The dyke is interpreted to have formed as a result of agglutination of the erupting mixture on a portion of the conduit wall as it failed and slid into the conduit, followed by residual squeezing between the failed block and in situ wallrock. Irrespective of the precise mechanism, widespread occurrence of both welded-tuff dykes and point-welded, aggregate pumices in pyroclastic deposits may imply that lining of conduit walls by agglutionation during explosive volcanic eruptions is a common process.

Journal ArticleDOI
TL;DR: In this paper, the conditions under which two magmas can become mixed within a rising magma batch are investigated by scaling analyses and fluid-dynamical experiments, and the results of scaling analyses show that the fluid behaviours in a squeezed conduit are determined mainly by the dimensionless number.
Abstract: The conditions under which two magmas can become mixed within a rising magma batch are investigated by scaling analyses and fluid-dynamical experiments The results of scaling analyses show that the fluid behaviours in a squeezed conduit are determined mainly by the dimensionless number $$I = \mu _1 U/g\Delta \rho R_{}^2$$ where μ 1 is the viscosity of the fluid, U is the velocity, g is the acceleration due to gravity, Δρ is the density difference between the two fluids, and R is the radius of the tube The parameter I represents a balance between the viscous effects in the uppermost magma which prevent it from being moved off the conduit walls, and the buoyancy forces which tend to keep the interface horizontal The experiments are carried out using fluid pairs of various density and viscosity contrasts in a squeezed vinyl tube They show that overturning of the initial density stratification and mixing occur when I>order 10-1; the two fluids remain stratified when I

Journal ArticleDOI
TL;DR: In this article, two groups of rhyolites have been recognized at San Vincenzo (Tuscany, Italy): group A and group B, which are characterized by plagioclase, quartz, biotite, sanidine and cordierite mineral assemblages.
Abstract: Two groups of rhyolites have been recognized at San Vincenzo (Tuscany, Italy). Group A rhyolites are characterized by plagioclase, quartz, biotite, sanidine and cordierite mineral assemblages. They show constant MgO and variable CaO and Na2O contents. Initial87Sr/86Sr ratios in group A samples range between 0.71950 and 0.72535, whereas the Nd isotopic compositions are relatively constant (0.51215–0.51222). Group B rhyolites are characterized by orthopyroxene and clinopyroxene as additional minerals, and show textural, mineralogical and chemical evidence of interaction with more mafic magmas. The Sr and Nd isotopic ratios range between 0.71283–0.71542 and 0.51224–0.51227 respectively. Magmatic inclusions of variable size (1 mm to 10 cm) were found in groups B rhyolites. These inclusions consist mainly of diopsidic clinopyroxene and minor olivine and biotite. They are latitic in composition and represent blobs of hybrid intermediate magmas entrained in the rhyolitic melts. These magmatic inclusions have relatively high Sr contents (996–1529 ppm) and Sr and Nd isotope-ratios of 0.70807–0.70830 and 0.51245–0.51252 respectively.87Sr/87Sr data on minerals separated from both group A and B rhyolites and magmatic inclusions reveal strong isotopic disequilibria due to the presence of both restitic and newly crystallized phases in group A rhyolites and due to interaction of rhyolites with a mantle-de-rived magma in group B rhyolites. Isotopic data on whole rocks and minerals allow us to interpret the group A rhyolites as representative of different degrees of melting of an isotopically fairly homogeneous pelitic source; conversely, group B rhyolites underwent interactions with a mantle-derived magma. The crustal source as inferred from isotopic systematics would be characterized by87Sr/86Sr and143Nd/144Nd ratios close to 0.7194 and 0.51216 respectively. The sub-crustal magma would have Sr isotopic composition close to 0.7077 and a143Nd/144Nd ratio greater than or equal to 0.51252. These isotopic features are different from those reported for the parental magmas postulated for Vulsini and Alban Hills in the nearby Roman Magmatic Province, and are similar to those of the Vesuvius and Ischia magmas.

Journal ArticleDOI
TL;DR: In this paper, the velocity, discharge rate and rheological properties of channelled moving lavas were calculated using a new method of analysing lava flow deposits, based on the theory that the lava banks up as it flowed around each of the bends.
Abstract: This paper presents a new method of analysing lava flow deposits which allows the velocity, discharge rate and rheological properties of channelled moving lavas to be calculated. The theory is applied to a lava flow which was erupted on Kilauea in July 1974. This flow came from a line of fissures on the edge of the caldera and was confined to a pre-existing gully within 50 m of leaving the vent. The lava drained onto the floor of the caldera when the activity stopped, but left wall and floor deposits which showed that the lava “banked up” as it flowed around each of the bends. Field surveys established the radius of curvature of each bend and the associated lava levels, and these data, together with related field and laboratory measurements, are used to study the rheology of the lava. The results show the flow to have been fast moving but still laminar, with a mean velocity of just over 8 m s−1; the lava had a low or negligible yield strength and viscosities in the range 85–140 Pa s. An extension of the basic method is considered, and the possibility of supercritical flow discussed.

Journal ArticleDOI
TL;DR: Basal layered deposits of the large-volume Peach Springs Tuff occur beneath the main pyroclastic flow deposit over a minimum lateral distance of 70 km in northwestern Arizona (USA).
Abstract: Basal layered deposits of the large-volume Peach Springs Tuff occur beneath the main pyroclastic flow deposit over a minimum lateral distance of 70 km in northwestern Arizona (USA). The basal deposits are interpreted to record initial blasting and pyroclastic surge events at the beginning of the eruption; the pyroclastic surges traveled a minimum of 100 km from the (as yet unknown) source. Changes in bedding structures with increasing flow distance are related to the decreasing sediment load of the surges. Some bed forms in the most proximal part of the study area (Kingman, Arizona) can be interpreted as being shock induced, reflecting a blast origin for the surges. Component analyses support a hydrovolcanic origin for some of the blasting and subsequent pyroclastic surges. The eruption apparently began with magmatic blasts, which were replaced by hydrovolcanic blasts. Hydrovolcanic activity may be partially related to failure of the conduit walls that temporarily plugged the vent. A single large-volume pyroclastic flow immediately followed the blast phase, and no evidence has been observed for a Plinian eruption column. The stratigraphic sequence indicates that powerful hydrovolcanic blasting rapidly widened the vent, thus bypassing a Plinian fallout phase and causing rapid evolution to a collapsing eruption column. Similar processes may occur in other large-volume ignimbrite eruptions, which commonly lack significant Plinian fallout deposits.

Journal ArticleDOI
TL;DR: A recent study of volatiles in 1835 scoria suggests sulfur release from the magma was negligible as mentioned in this paper, indicating that the Cosiguina eruption probably had little global climatic impact.
Abstract: In the “great” January 1835 eruption of Cosiguina volcano, Nicaragua, andesitic magma and lithic material were erupted over a period of at least three days. Proximal facies consist of clastogenic lava, scoria-fall, and lithic ash-fall produced by phreatomagmatic to vulcanian or plinian activity, together with surge deposits and lithic block-falls. Pyroclastic flow deposits covered some flanks of the volcano and entered the sea in the Gulf of Fonseca. Little record exists of the distal ash-fall, thus the total bulk volume erupted can only be roughly constrained to 2.9–5.6 km3. Furthermore, the amount of juvenile material is thought to be small. A recent study of volatiles in 1835 scoria suggests sulfur release from the magma was negligible. This reappraisal indicates that the Cosiguina eruption probably had little global climatic impact. Despite its violent nature, the magnitude of the eruption was modest. The eruption occurred too late to initiate the Northern Hemisphere cooling trend form 1828–1836. Dry fogs and other atmospheric optical phenomena usually observed after eruptions that contribute significantly to the stratospheric aerosol burden were not recorded after 1835.

Journal ArticleDOI
TL;DR: In this paper, the authors present multibeam bathmetry of the entire ridge, near-bottom photographic and sonar observations of the plunging crest of its deeper distal half, and seismic profiles across the ridge tip and the adjacent structural moat.
Abstract: More than half of the intensely active East Rift Zone of Kilauea Volcano crops out underwater along the crest of the submarine Puna Ridge. I present multibeam bathmetry of the entire ridge, near-bottom photographic and sonar observations of the plunging crest of its deeper distal half, and seismic profiles across the ridge tip and the adjacent structural moat. Analysis of large-scale relief, small-scale topography, and superficial rock types indicates that the rift zone is actively propagating across the moat but is probably a superficial structure that does not penetrate the underlying oceanic crust, that its tip is covered with large lava flows erupted at high rates and is surrounded with extensive debris flow deposits, and that the axial topography at depths of 2–4 km is dominated by gaping fissures and collapse pits, showing a preponderance of intrusive rather than extrusive events. Some aspects of this central-volcano rift zone, such as its geometry at small lateral offsets, resemble those at interplate rift zones along fast-spreading mid-ocean rises, but the great contrast in lithosphere thickness results in fundamental structural differences.