scispace - formally typeset
Search or ask a question

Showing papers in "Climate Dynamics in 2001"


Journal ArticleDOI
TL;DR: In this article, various diagnostics have been applied to daily observed outgoing longwave radiation (OLR) and ECMWF ReAnalysis (ERA) products to provide a comprehensive description of the active/break cycles associated with the Asian Summer Monsoon and to address the differing behaviour of the two dominant time scales of intraseasonal variability, 10−20 days and 30−60 days.
Abstract: In this study, various diagnostics have been applied to daily observed outgoing longwave radiation (OLR) and ECMWF ReAnalysis (ERA) products to provide a comprehensive description of the active/break cycles associated with the Asian Summer Monsoon and to address the differing behaviour of the two dominant time scales of intraseasonal variability, 10–20 days and 30–60 days. Composite analysis of OLR based on filtered daily All-India rainfall (AIR) for the 40 day (30–60 days) intraseasonal mode indicates that during active phases, convection is significantly enhanced over the Indian continent, extending over the Bay of Bengal, Maritime continent and equatorial west Pacific, while convection is suppressed over the equatorial Indian Ocean and northwest tropical Pacific, resulting in a ‘quadrapole’ structure over the Asian monsoon domain. In response to this heating pattern, the large-scale Hadley (lateral) and the two east-west (transverse) tropical circulations are enhanced. There is also a significant impact on the extra-tropical circulation through excitation and propagation of Rossby waves. In contrast, the 15-day mode is more regional to the monsoon domain and has a prominent east-west orientation in convection. Only the local Hadley circulation over the monsoon region is modulated by this mode. The evolution of these two modes as revealed by POP (principal oscillation pattern) analysis, shows that the 40-day mode originates over the equatorial Indian Ocean. Once formed it has poleward propagation on either side of the equator, and eastward propagation into the equatorial west Pacific. From the equatorial west Pacific, northward propagation over the west Pacific and westward propagation into the Indian longitudes are prominent. The propagative features are complex and interactive and are responsible for the ‘quadrapole’ structure in convection seen from the composites. The interannual variability, assessed from the POP coefficient time series, indicates that the 40-day mode is strong during the onset phase of the monsoon in all the years but systematic propagation over the entire season depends crucially on the activity of the oceanic TCZ (tropical convergence zone). The POP analysis of the 15-day mode indicates that this event originates over the␣equatorial west Pacific, associated with westward propagating Rossby waves, amplifies over the northwest tropical Pacific and modulates both the continental and oceanic TCZs over Indian longitudes simultaneously. This mode is pronounced during the established phase of the monsoon. Due to the complexity in the propagational features of both the intraseasonal modes, it is concluded that understanding the subseasonal variability of one regional component of the Asian Summer Monsoon (ASM), requires understanding the entire ASM system.

434 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined the internal climate variability of a 1000 year long integration of the third version of the Hadley Centre coupled model (HadCM3) and compared it with the HadCM2.
Abstract: We examine the internal climate variability of a 1000 year long integration of the third version of the Hadley Centre coupled model (HadCM3). The model requires no flux adjustment, needs no spin up procedure prior to coupling and has a stable climate in the global mean. The principal aims are (1) to validate the internal climate variability against observed climate variability, (2) to examine the model for any periodic modes of variability, (3) to use the model estimate of internal climate variability to asses the probability of occurrence of observed trends in climate variables, and (4) to compare HadCM3 with the previous version of the Hadley Centre model, HadCM2. The magnitude and frequency characteristics of the variability of the global mean surface temperature of HadCM3 on annual to decadal time scales is in good agreement with the observations. Observed upward trends in temperature over the last 20 years and longer are inconsistent with the internal variability of the model. The simulated spatial pattern of surface temperature variability is qualitatively similar to that observed, although there is an overestimation of the land temperature variability and regional errors in ocean temperature variability. The model simulates an El Nino Southern Oscillation with an irregular 3–4 year cycle, and with a teleconnection pattern which is much more like the observations than was found in HadCM2. The interdecadal variability of the model ocean in the tropical Pacific, North Pacific and North Atlantic is broadly similar to that in the real world with none of the simulated patterns having any periodic behaviour. HadCM3 simulates an Arctic Oscillation/North Atlantic Oscillation (NAO) in Northern Hemisphere winter which has a spatial pattern consistent with the observations in the Atlantic region, but has too much teleconnection with the North Pacific. The recent observed upward trend in the NAO index is inconsistent with the model internal variability. The variability of the simulated zonal mean atmospheric temperature shows some marked differences to the observed zonal mean temperature variability, although the comparison is confounded by the sparse observational network and its possible contamination by a climate change signal.

411 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared radiative fluxes and cloudiness fields from three general circulation models (the HadAM4 version of the Hadley Centre Unified model, cycle 16r2 of the ECMWF model and version LMDZ 2.0 of the LMD GCM), using a combination of satellite observations from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Project (ISCCP).
Abstract: This study compares radiative fluxes and cloudiness fields from three general circulation models (the HadAM4 version of the Hadley Centre Unified model, cycle 16r2 of the ECMWF model and version LMDZ 2.0 of the LMD GCM), using a combination of satellite observations from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Project (ISCCP). To facilitate a meaningful comparison with the ISCCP C1 data, values of column cloud optical thickness and cloud top pressure are diagnosed from the models in a manner consistent with the satellite view from space. Decomposing the cloud radiative effect into contributions from low-medium- and high-level clouds reveals a tendency for the models' low-level clouds to compensate for underestimates in the shortwave cloud radiative effect caused by a lack of high-level or mid-level clouds. The low clouds fail to compensate for the associated errors in the longwave. Consequently, disproportionate errors in the longwave and shortwave cloud radiative effect in models may be taken as an indication that compensating errors are likely to be present. Mid-level cloud errors in the mid-latitudes appear to depend as much on the choice of the convection scheme as on the cloud scheme. Convective and boundary layer mixing schemes require as much consideration as cloud and precipitation schemes when it comes to assessing the simulation of clouds by models. Two distinct types of cloud feedback are discussed. While there is reason to doubt that current models are able to simulate potential `cloud regime' type feedbacks with skill, there is hope that a model capable of simulating potential `cloud amount' type feedbacks will be achievable once the reasons for the remaining differences between the models are understood.

367 citations


Journal ArticleDOI
TL;DR: In the first phase of the Coupled Model Intercomparison Project (CMIP1) as mentioned in this paper, 15 coupled atmosphere/ocean climate models were compared and evaluated, and the results for global means, zonal averages, and geographical distributions of basic climate variables were assembled and compared with observations.
Abstract: The climates simulated by 15 coupled atmosphere/ocean climate models participating in the first phase of the Coupled Model Intercomparison Project (CMIP1) are intercompared and evaluated. Results for global means, zonal averages, and geographical distributions of basic climate variables are assembled and compared with observations. The current generation of climate models reproduce the major features of the observed distribution of the basic climate parameters, but there is, nevertheless, a considerable scatter among model results and between simulated and observed values. This is particularly true for oceanic variables. Flux adjusted models generally produce simulated climates which are in better accord with observations than do non-flux adjusted models; however, some non-flux adjusted model results are closer to observations than some flux adjusted model results. Other model differences, such as resolution, do not appear to provide a clear distinction among model results in this generation of models. Many of the systematic differences (those differences common to most models), evident in previous intercomparison studies are exhibited also by the CMIP1 group of models although often with reduced magnitudes. As is characteristic of intercomparison results, different climate variables are simulated with different levels of success by different models and no one model is “best” for all variables. There is some evidence that the “mean model” result, obtained by averaging over the ensemble of models, provides an overall best comparison to observations for climatological mean fields. The model deficiencies identified here do not suggest immediate remedies and the overall success of the models in simulating the behaviour of the complex non-linear climate system apparently depends on the slow improvement in the balance of approximations that characterize a coupled climate model. Of course, the results of this and similar studies provide only an indication, at a particular time, of the current state and the moderate but steady evolution and improvement of coupled climate models.

331 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present reconstructions of the annual Pacific Decadal Oscillation (PDO) index based on western North American tree-ring records which account for up to 53% of the instrumental variance and extend as far back as AD 1700.
Abstract: Decadal-scale oscillatory modes of atmosphere-ocean variability have recently been identified in instrumental studies of the Pacific sector. The regime shift around 1976 is one example of such a fluctuation, which has been shown to have significantly impacted climate and the environment along the coastline of the western N and S Americas. The length of meteorological data for the Pacific and western Americas critically limits analyses of such decadal-scale climate variability. Here we present reconstructions of the annual Pacific Decadal Oscillation (PDO) index based on western North American tree-ring records which account for up to 53% of the instrumental variance and extend as far back as AD 1700. The PDO reconstructions indicate that decadal-scale climatic shifts have occurred prior to the period of instrumental record. Evaluation of temperature and precipitation-sensitive tree-ring series from the northeast Pacific as well as these reconstructions reveals evidence for a shift towards less pronounced interdecadal variability after about the middle 1800s. Our analyses also suggest that sites from both the northeast Pacific coast as well as the subtropical Americas need to be included in proxy data sets used to reconstruct the PDO.

309 citations


Journal ArticleDOI
TL;DR: In this paper, an ensemble of twenty four coupled ocean-atmosphere models has been compared with respect to their performance in the tropical Pacific, and the performance of the annual mean state, the seasonal cycle and the interannual variability are investigated.
Abstract: An ensemble of twenty four coupled ocean-atmosphere models has been compared with respect to their performance in the tropical Pacific. The coupled models span a large portion of the parameter space and differ in many respects. The intercomparison includes TOGA (Tropical Ocean Global Atmosphere)-type models consisting of high-resolution tropical ocean models and coarse-resolution global atmosphere models, coarse-resolution global coupled models, and a few global coupled models with high resolution in the equatorial region in their ocean components. The performance of the annual mean state, the seasonal cycle and the interannual variability are investigated. The primary quantity analysed is sea surface temperature (SST). Additionally, the evolution of interannual heat content variations in the tropical Pacific and the relationship between the interannual SST variations in the equatorial Pacific to fluctuations in the strength of the Indian summer monsoon are investigated. The results can be summarised as follows: almost all models (even those employing flux corrections) still have problems in simulating the SST climatology, although some improvements are found relative to earlier intercomparison studies. Only a few of the coupled models simulate the El Nino/Southern Oscillation (ENSO) in terms of gross equatorial SST anomalies realistically. In particular, many models overestimate the variability in the western equatorial Pacific and underestimate the SST variability in the east. The evolution of interannual heat content variations is similar to that observed in almost all models. Finally, the majority of the models show a strong connection between ENSO and the strength of the Indian summer monsoon.

292 citations


Journal ArticleDOI
TL;DR: The winter climatology of Northern Hemisphere cyclone activity was derived from 6-hourly NCEP/NCAR reanalysis data for the period from 1958 to 1999, using software which provided improved accuracy in cyclone identification in comparison to numerical tracking schemes as mentioned in this paper.
Abstract: The winter climatology of Northern Hemisphere cyclone activity was derived from 6-hourly NCEP/NCAR reanalysis data for the period from 1958 to 1999, using software which provides improved accuracy in cyclone identification in comparison to numerical tracking schemes. Cyclone characteristics over the Kuroshio and Gulfstream are very different to those over continental North America and the Arctic. Analysis of Northern Hemisphere cyclones shows secular and decadal-scale changes in cyclone frequency, intensity, lifetime and deepening rates. The western Pacific and Atlantic are characterized by an increase in cyclone intensity and deepening during the 42-year period, although the eastern Pacific and continental North America demonstrate opposite tendencies in most cyclone characteristics. There is an increase of the number of cyclones in the Arctic and in the western Pacific and a downward tendency over the Gulf Stream and subpolar Pacific. Decadal scale variability in cyclone activity over the Atlantic and Pacific exhibits south-north dipole-like patterns. Atlantic and Pacific cyclone activity associated with the NAO and PNA is analyzed. Atlantic cyclone frequency demonstrates a high correlation with NAO and reflects the NAO shift in the mid 1970s, associated with considerable changes in European storm tracks. The PNA is largely linked to the eastern Pacific cyclone frequencies, and controls cyclone activity over the Gulf region and the North American coast during the last two decades. Assessment of the accuracy of the results and comparison with those derived using numerical algorithms, shows that biases inherent in numerical procedures are not negligible.

251 citations


Journal ArticleDOI
TL;DR: In this paper, the correlation between Sahel rainfall and El Nino-Southern Oscillation (ENSO) in the northern summer has been varying for the last fifty years, and the existence of periods of weak or strong relationship could result from an interaction with the global decadal scale SST background.
Abstract: The correlation between Sahel rainfall and El Nino–Southern Oscillation (ENSO) in the northern summer has been varying for the last fifty years. We propose that the existence of periods of weak or strong relationship could result from an interaction with the global decadal scale sea surface temperature (SST) background. The main modes of SST variability have been extracted through a principal component analysis with Varimax rotation. The correlations between a July-September Sahel rainfall index and these SST modes have been computed on a 20-year running window between 1945 and 1993. The correlations with the interannual ENSO-SST mode are negative, not significant in the 1960s during the transition period from the wet climate phasis to the long-running drought in the Sahel, but then were significant since 1976. During the former period, the correlations between the Sahel rainfall index and the other SST modes (expressing mostly on quasi and multi-decadal scales) are the highest, in particular correlations with the tropical Atlantic “dipole”. Correlations between Sahel and Guinea Coast rainfall are also significantly negative. After 1970, the Sahel-Guinea Coast rainfall correlations are no longer significant, and the ENSO-SST mode becomes the only one significantly correlated with Sahel rainfall, especially due to the impact of warm events. The partial correlations between the ENSO-SST mode and the Sahel rainfall index, when the influence of the other SST modes are eliminated, are significant over all the 20-year running periods between 1945 and 1993, suggesting that this summer teleconnection could be modulated by the decadal scale SST background. The NCEP/NCAR reanalyses reproduce accurately the interannual variability of the atmospheric circulation after 1968. In particular a regional West African Monsoon Index (WAMI), combining wind speed anomalies at 925 and 200 hPa, is highly correlated with the July-September Sahel rainfall index. A warm ENSO event is associated both with an eastward mean sea level pressure gradient between the eastern tropical Pacific and the tropical Atlantic and with a northward pressure gradient along the western coast of West Africa. This pattern leads to enhanced trade winds over the tropical Atlantic and to weaker moisture advection over West Africa, consistent with a weaker monsoon system strength and a weaker Southern Hemisphere Hadley circulation. The NCEP/NCAR reanalyses do not reproduce accurately the decadal variability of the atmospheric circulation over West Africa because of artifical biases. Therefore the impact of the decadal scale pattern of the atmospheric circulation has been investigated with atmospheric general circulation model (AGCM) sensitivity experiments, by forcing the ARPEGE-Climat model with different combinations of an El Nino-like SST pattern with the pattern of the main mode of decadal scale SST variability where the hightest weights are located in the Pacific and Indian basins. AGCM outputs show that the decadal scale SST variations weakly affect Sahel rainfall variability but that they do induce an indirect effect on Sahel rainfall by enhancing the impact of the warm ENSO phases after 1980, through an increase in the fill-in of the monsoon trough and a moisture advection deficit over West Africa.

229 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared the mean mean surface fluxes derived from the assimilating models and from the Comprehensive Ocean Atmosphere Data Set (COADS), both locally and zonally integrated, to deduce the implied ocean meridional heat transports.
Abstract: Comprehensive diagnostic comparisons and evaluations have been carried out with the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and European Centre for Medium Range Weather Forecasts (ECMWF) reanalyses of the vertically integrated atmospheric energy budgets. For 1979 to 1993 the focus is on the monthly means of the divergence of the atmospheric energy transports. For February 1985 to April 1989, when there are reliable top-of-the-atmosphere (TOA) radiation data from the Earth Radiation Budget Experiment (ERBE), the implied monthly mean surface fluxes are derived and compared with those from the assimilating models and from the Comprehensive Ocean Atmosphere Data Set (COADS), both locally and zonally integrated, to deduce the implied ocean meridional heat transports.

219 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used an optimal detection methodology to compare seasonal and annual data from the coupled atmosphere-ocean general circulation model HadCM2 with observations averaged over a range of spatial and temporal scales.
Abstract: We analyse possible causes of twentieth century near-surface temperature change. We use an “optimal detection” methodology to compare seasonal and annual data from the coupled atmosphere-ocean general circulation model HadCM2 with observations averaged over a range of spatial and temporal scales. The results indicate that the increases in temperature observed in the latter half of the century have been caused by warming from anthropogenic increases in greenhouse gases offset by cooling from tropospheric sulfate aerosols rather than natural variability, either internal or externally forced. We also find that greenhouse gases are likely to have contributed significantly to the warming in the first half of the century. In addition, natural effects may have contributed to this warming. Assuming one particular reconstruction of total solar irradiance to be correct implies, when we take the seasonal cycle into account, that solar effects have contributed significantly to the warming observed in the early part of the century, regardless of any relative error in the amplitudes of the anthropogenic forcings prescribed in the model. However, this is not the case with an alternative reconstruction of total solar irradiance, based more on the amplitude than the length of the solar cycle. We also find evidence for volcanic influences on twentieth century near-surface temperatures. The signature of the eruption of Mount Pinatubo is detected using annual-mean data. We also find evidence for a volcanic influence on warming in the first half of the century associated with a reduction in mid-century volcanism.

219 citations


Journal ArticleDOI
Abstract: Historically, El Nino-like events simulated in global coupled climate models have had reduced amplitude compared to observations. Here, El Nino-like phenomena are compared in ten sensitivity experiments using two recent global coupled models. These models have various combinations of horizontal and vertical ocean resolution, ocean physics, and atmospheric model resolution. It is demonstrated that the lower the value of the ocean background vertical diffusivity, the greater the amplitude of El Nino variability which is related primarily to a sharper equatorial thermocline. Among models with low background vertical diffusivity, stronger equatorial zonal wind stress is associated with relatively higher amplitude El Nino variability along with more realistic east–west sea surface temperature (SST) gradient along the equator. The SST seasonal cycle in the eastern tropical Pacific has too much of a semiannual component with a double intertropical convergence zone (ITCZ) in all experiments, and thus does not affect, nor is it affected by, the amplitude of El Nino variability. Systematic errors affecting the spatial variability of El Nino in the experiments are characterized by the eastern equatorial Pacific cold tongue regime extending too far westward into the warm pool. The time scales of interannual variability (as represented by time series of Nino3 SSTs) show significant power in the 3–4 year ENSO band and 2–2.5 year tropospheric biennial oscillation (TBO) band in the model experiments. The TBO periods in the models agree well with the observations, while the ENSO periods are near the short end of the range of 3–6 years observed during the period 1950–94. The close association between interannual variability of equatorial eastern Pacific SSTs and large-scale SST patterns is represented by significant correlations between Nino3 time series and the PC time series of the first EOFs of near-global SSTs in the models and observations.

Journal ArticleDOI
TL;DR: In this article, a step wise northeastward movement over the South China Sea and the western North Pacific (WNP) was identified in the atmospheric circulation, and three abrupt changes were identified.
Abstract: The climatological summer monsoon onset displays a distinct step wise northeastward movement over the South China Sea and the western North Pacific (WNP) (110°–160°E, 10°–20°N). Monsoon rain commences over the South China Sea-Philippines region in mid-May, extends abruptly to the southwestern Philippine Sea in early to mid-June, and finally penetrates to the northeastern part of the domain around mid-July. In association, three abrupt changes are identified in the atmospheric circulation. Specifically, the WNP subtropical high displays a sudden eastward retreat or quick northward displacement and the monsoon trough pushes abruptly eastward or northeastward at the onset of the three stages. The step wise movement of the onset results from the slow northeastward seasonal evolution of large-scale circulation and the phase-locked intraseasonal oscillation (ISO). The seasonal evolution establishes a large-scale background for the development of convection and the ISO triggers deep convection. The ISO over the WNP has a dominant period of about 20–30 days. This determines up the time interval between the consecutive stages of the monsoon onset. From the atmospheric perspective, the seasonal sea surface temperature (SST) change in the WNP plays a critical role in the northeastward advance of the onset. The seasonal northeastward march of the warmest SST tongue (SST exceeding 29.5 °C) favors the northeastward movement of the monsoon trough and the high convective instability region. The seasonal SST change, in turn, is affected by the monsoon through cloud-radiation and wind-evaporation feedbacks.

Journal ArticleDOI
TL;DR: In this paper, a 35 km resolution storm surge model of the North west European continental shelf region has been driven by winds and pressures from the Hadley Centre nested regional climate model, and the results suggest that, in addition to the effect of rising mean sea level, at many locations around the United Kingdom coastline future changes in local meteorology will lead to further significant changes in the return periods of extreme storm surge events.
Abstract: A potential consequence of climate change is an alteration of the frequency of extreme coastal storm surge events. It is these extreme events which, from an impacts point of view, will be of more concern than the slow inundation of coastal areas by century scale changes in mean sea level. In this study, a 35 km resolution storm surge model of the North west European continental shelf region has been driven by winds and pressures from the Hadley Centre nested regional climate model. Simulations of both present day and future climate (the end of the twentyfirst century) have been performed. The results suggest that, in addition to the effect of rising mean sea level, at many locations around the United Kingdom coastline future changes in local meteorology will lead to further significant changes in the return periods of extreme storm surge events. At most sites, this meteorologically forced change represents a reduction in return period.

Journal ArticleDOI
TL;DR: In this paper, a set of sensitivity experiments with the climate system model of intermediate complexity CLIMBER-2 was performed to compare its sensitivity to changes in different types of forcings and boundary conditions with the results of comprehensive models (GCMs).
Abstract: A set of sensitivity experiments with the climate system model of intermediate complexity CLIMBER-2 was performed to compare its sensitivity to changes in different types of forcings and boundary conditions with the results of comprehensive models (GCMs). We investigated the climate system response to changes in freshwater flux into the Northern Atlantic, CO2 concentration, solar insolation, and vegetation cover in the boreal zone and in the tropics. All these experiments were compared with the results of corresponding experiments performed with different GCMs. Qualitative, and in many respects, quantitative agreement between the results of CLIMBER-2 and GCMs demonstrate the ability of our climate system model of intermediate complexity to address diverse aspects of the climate change problem. In addition, we used our model for a series of experiments to assess the impact of some climate feedbacks and uncertainties in model parameters on the model sensitivity to different forcings. We studied the role of freshwater feedback and vertical ocean diffusivity for the stability properties of the thermohaline ocean circulation. We show that freshwater feedback plays a minor role, while changes of vertical diffusivity in the ocean considerably affect the circulation stability. In global warming experiments we analysed the impact of hydrological sensitivity and vertical diffusivity on the long-term evolution of the thermohaline circulation. In the boreal and tropical deforestation experiments we assessed the role of an interactive ocean and showed that for both types of deforestation scenarios, an interactive ocean leads to an additional cooling due to albedo and water vapour feedbacks.

Journal ArticleDOI
TL;DR: In this article, an intercomparison of results from ten coupled atmosphere-ocean general circulation models (AOGCMs) for sea-level changes simulated for the twentieth century and projected to occur during the twenty first century in experiments following scenario IS92a for greenhouse gases and sulphate aerosols is presented.
Abstract: Sea-level rise is an important aspect of climate change because of its impact on society and ecosystems. Here we present an intercomparison of results from ten coupled atmosphere-ocean general circulation models (AOGCMs) for sea-level changes simulated for the twentieth century and projected to occur during the twenty first century in experiments following scenario IS92a for greenhouse gases and sulphate aerosols. The model results suggest that the rate of sea-level rise due to thermal expansion of sea water has increased during the twentieth century, but the small set of tide gauges with long records might not be adequate to detect this acceleration. The rate of sea-level rise due to thermal expansion continues to increase throughout the twenty first century, and the projected total is consequently larger than in the twentieth century; for 1990–2090 it amounts to 0.20–0.37 m. This wide range results from systematic uncertainty in modelling of climate change and of heat uptake by the ocean. The AOGCMs agree that sea-level rise is expected to be geographically non-uniform, with some regions experiencing as much as twice the global average, and others practically zero, but they do not agree about the geographical pattern. The lack of agreement indicates that we cannot currently have confidence in projections of local sea-level changes, and reveals a need for detailed analysis and intercomparison in order to understand and reduce the disagreements.

Journal ArticleDOI
TL;DR: In this paper, a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM), is described.
Abstract: This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results.

Journal ArticleDOI
TL;DR: The NCAR Community Climate Model (version 3) coupled with the Biosphere Atmosphere Transfer scheme and a mixed layer ocean model is used to investigate the impact on the climate of a conservative change from natural to present land cover.
Abstract: The NCAR Community Climate Model (version 3), coupled to the Biosphere Atmosphere Transfer scheme and a mixed layer ocean model is used to investigate the impact on the climate of a conservative change from natural to present land cover. Natural vegetation cover was obtained from an ecophysiologically constrained biome model. The current vegetation cover was obtained by perturbing the natural cover from forest to grass over areas where land cover has been observed to change. Simulations were performed for 17 years for each case (results from the last 15 years are presented here). We find that land cover changes, largely constrained to the tropics, SE Asia, North America and Europe, cause statistically significant changes in regional temperature and precipitation but cause no impact on the globally averaged temperature or precipitation. The perturbation in land cover in the tropics and SE Asia teleconnect to higher latitudes by changing the position and strength of key elements of the general circulation (the Hadley and Walker circulations). Many of the areas where statistically significant changes occur are remote from the location of land cover change. Historical land cover change is not typically included in transitory climate simulations, and it may be that the simulation of the patterns of temperature change over the twentieth century by climate models will be further improved by taking it into account.

Journal ArticleDOI
TL;DR: In this paper, the effect of condensation heating on the formation of the subtropical anticyclone in the Eastern Hemisphere (EH) is studied by means of theoretical analysis and numerical simulation.
Abstract: The effects of condensation heating on the formation of the subtropical anticyclone in the Eastern Hemisphere (EH) are studied by means of theoretical analysis and numerical simulation. The complete vorticity equation is employed for the analysis. It is found that, due to the vertical gradient of strong condensation heating, the distribution of cyclone and anticyclone in the upper troposphere is out of phase with that in the middle and lower troposphere. This is confirmed by a series of numerical experiments. The horizontal gradient of the condensation heating also affects the configuration of the subtropical anticyclone. It is concluded that condensation heating is a key factor for the formation and location of the summer subtropical anticyclone in the EH. The latent heating released by the Asian monsoon rainfall contributes to the formation of the 200 hPa South Asian anticyclone on the western side of the heating center and the 500 hPa western Pacific subtropical anticyclone on the eastern side of the center. Such configurations are modified to some extent by surface sensible heating and orography. The circulation in mid-latitudes is also affected by the latent heating in the subtropical area through the propagation of Rossby waves.

Journal ArticleDOI
TL;DR: In this article, the role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM).
Abstract: The role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM). Four sets of integrations are performed using SST in El Nino and La Nina (ENSO) episodes, changing the SST of the Atlantic Ocean. A positive dipole (SST higher than normal in the tropical North Atlantic and below normal in the tropical South Atlantic) and a negative dipole (opposite conditions), are set as the boundary conditions of SST in the Atlantic Ocean. The four experiments are performed using El Nino or La Nina SST in all oceans, except in the tropical Atlantic where the two phases of the SST dipole are applied. Five initial conditions were integrated in each case in order to obtain four ensemble results. The positive SST dipole over the tropical Atlantic Ocean and El Nino conditions over the Pacific Ocean resulted in dry conditions over the Nordeste. When the negative dipole and El Nino conditions over the Pacific Ocean were applied, the results showed precipitation above normal over the north of Nordeste. When La Nina conditions over Pacific Ocean were tested together with a negative dipole, positive precipitation anomalies occurred over the whole Nordeste. Using the positive dipole over the tropical Atlantic, the precipitation over Nordeste was below average. During La Nina episodes, the Atlantic Ocean conditions have a larger effect on the precipitation of Nordeste than the Pacific Ocean. In El Nino conditions, only the north region of Nordeste is affected by the Atlantic SST. Other tropical areas of South America show a change only in the intensity of anomalies. Central and southeast regions of South America are affected by the Atlantic conditions only during La Nina conditions, whereas during El Nino these regions are influenced only by conditions in the Pacific Ocean.

Journal ArticleDOI
TL;DR: In this paper, a standard principal component analysis has been performed over the Mediterranean and over the larger European region on monthly precipitation anomalies for the winters between 1979 and 1995, and a strong correlation has been found suggesting the presence of a two-way link between regional precipitation patterns and large-scale circulation anomalies.
Abstract: A standard principal component analysis has been performed over the Mediterranean and over the larger European region on monthly precipitation anomalies for the winters between 1979 and 1995. The main centres of action of the associated EOFs are very similar for the two regions and the two sets of PCs are highly correlated with each other. Focusing on the Mediterranean region, the same analysis has been performed using 500 hPa geopotential height monthly anomalies taken from the operational NCEP analysis. Comparing the two sets of PCs associated with upper-air and surface data, a strong correlation has been found suggesting the presence of a two-way link between regional precipitation patterns and large-scale circulation anomalies. For both fields, the largest fraction of variance is explained by the North Atlantic Oscillation, while smaller but still substantial fractions are explained by other known patterns of large-scale variability such as the Eastern Atlantic pattern and the Euro-Atlantic blocking. No detectable connection has been found between Mediterranean precipitation patterns and El Nino SST anomalies during winter. With respect to temporal variability, significant trends have been found over most European areas during the winters considered. The associated pattern is characterised by a substantial increase of precipitation over western Scandinavia and a general decrease over southern Europe. This result is confirmed by analysing data from stations located in northern Italy.

Journal ArticleDOI
TL;DR: In this article, a water-covered version of the same GCM is used to investigate the behavior of tropical convection when the vertical resolution is doubled in the free troposphere, and the spectrum of tropical cloud types changes from a bimodal distribution with peaks representing shallow cumulus and deep cumulonimbus clouds to a trimodal distributions with a third peak in mid-troposphere near the melting level.
Abstract: Experiments using a GCM with two different vertical resolutions show differences in the amount of variability in the tropical upper tropospheric zonal wind component associated with the Madden-Julian Oscillation (MJO). The GCM with lower vertical resolution shows very little variability in this quantity whereas when the vertical resolution is doubled in the free troposphere, the GCM produces variability which is of the same strength as observations. However, the eastward propagation of an enhanced convective region from the Indian Ocean into the west Pacific is not well represented in either simulation of this atmospheric GCM. A water-covered or “aqua-planet” version of the same GCM is used to investigate the behaviour of tropical convection when the vertical resolution is doubled. When the vertical resolution is increased, the spectrum of tropical cloud types changes from a bimodal distribution with peaks representing shallow cumulus and deep cumulonimbus clouds to a trimodal distribution with a third peak in mid-troposphere near the melting level. Associated with periods when these mid-level congestus clouds are dominant, the detrainment from these clouds significantly moistens the mid-troposphere. The appearance of these congestus clouds is shown to be partly due to improved resolution of the freezing level and the convective processes occurring at this level. However, due to the way in which convective detrainment is parametrized in this model, the vertical profile becomes rather noisy and this too contributes to the change in the nature of the convective clouds. The resulting cloud distribution more closely resembles observations, particularly during the suppressed phase of the MJO when cumulus congestus is the dominant cloud type.

Journal ArticleDOI
TL;DR: In this article, a new parametrization of the snow cover fraction (SCF) for use in general circulation models is proposed, which is based on the satellite-derived surface albedo.
Abstract: Snow cover fraction (SCF) has a significant influence on the surface albedo and thus on the radiation balance and surface climate. Long-term three dimensional simulations with general circulation models (GCMs) show that the SCF greatly affects the climate in the Northern Hemisphere. By means of both ground observations and remotely sensed data, several deficiencies in the SCF simulated by the current ECHAM4 GCM were identified: over mountainous areas a substantial overestimation in the SCF was found whereas flat areas showed a distinctly underestimated SCF. This work proposes a new parametrization of the SCF for use in GCMs. Evaluations illustrate that it is beneficial to distinguish between the following three terrains: (1) flat, non-forested areas, (2) mountainous regions and (3) forests. The modified SCF parametrization for flat, non-forested areas was derived by using global datasets of ground-based snow depth and remote sensing observations of snow cover data. A 3-dimensional ECHAM4 simulation showed that this modification raises the SCF by up to approximately 20%, mainly in areas with a relatively thin snow cover. The comparison between remotely sensed and simulated mean monthly surface albedo revealed a significant overestimation of the surface albedo in snow-covered mountainous areas. An extension of the current SCF parametrization in ECHAM4 to take into account mountain effects, based on the French climate model Arpege, yielded a close agreement with satellite-derived surface albedo. The adoption of the submodel for snow albedo, as used in the Canadian Land Surface Scheme (CLASS), combined with a newly developed simple snow interception model, demonstrated the ability to capture the main physical processes of snow-covered canopies, including the albedo. The validation of the new parametrization with Boreal Ecosystem-Atmosphere Study (BOREAS) field data showed that the modification is appropriate to capture the main features of the albedo over snow-covered forests during and after heavy snowfall events. Furthermore, the proposed modification has a beneficial impact on the delayed snow melt in spring, a well-known problem in many current GCMs: The simulated surface albedo over the boreal forests decreases by approximately 0.1 during winter and spring, which is in better agreement with ground-based observations. This induces a significant rise in the surface temperature over extended parts of Eurasia and North America in late spring, which subsequently yields a faster snowmelt and an accelerated retreat of the snow line.

Journal ArticleDOI
TL;DR: In this article, the relationship between European winter temperature spatial and temporal modes of variability and the North Atlantic Oscillation (NAO) has been studied during the period 1852-1997.
Abstract: The relationship between European winter temperature spatial and temporal modes of variability and the North Atlantic Oscillation (NAO) has been studied during the period 1852–1997. Temporal modes of variability of the NAO and temperatures are analysed using wavelet transform. Results show that the NAO presents a strong non-stationary behaviour. The most important feature is the existence of a quasi-periodic oscillation, with a period between 6–10 years and maximum amplitude of eight years, during the periods 1842–1868 and 1964–1994. Between 1875 and 1939 the spectra of the NAO is almost white. The possible relationship between the occurrence of extreme events of the NAO and its spectral behaviour has been analysed. The results indicate that quasi-periodic oscillations in the NAO do not lead to more extreme episodes, but rather that an extreme value of the oscillation is more likely to persist for few years. Particularly energetic modes of coherent variability between temperature and NAO are found between 2–6 years for 1857–1879 and 1978–1984, and between 6–10 years from 1961 to 1991. The relationship between the NAO and temperatures as a function of the state of the oscillation has been studied using composites. Empirical evidence has been found suggesting that winter temperatures, in a great part of the study area, do not vary in a linear manner with respect to phase and intensity of the NAO. Regions in the study area differ in sensitivity to changes in the NAO. The spatial patterns of variability of the temperatures are found to be independent of the NAO spectra.

Journal ArticleDOI
TL;DR: In this paper, a nonlinear impulse-response model of the coupled carbon cycle-climate system (NICCS) is proposed to compute the temporal evolution of spatial patterns of climate change for four climate variables of particular relevance for climate impact studies: near-surface temperature, cloud cover, precipitation, and sea level.
Abstract: Impulse-response-function (IRF) models are designed for applications requiring a large number of climate change simulations, such as multi-scenario climate impact studies or cost-benefit integrated-assessment studies. The models apply linear response theory to reproduce the characteristics of the climate response to external forcing computed with sophisticated state-of-the-art climate models like general circulation models of the physical ocean-atmosphere system and three-dimensional oceanic-plus-terrestrial carbon cycle models. Although highly computer efficient, IRF models are nonetheless capable of reproducing the full set of climate-change information generated by the complex models against which they are calibrated. While limited in principle to the linear response regime (less than about 3 ∘C global-mean temperature change), the applicability of the IRF model presented has been extended into the nonlinear domain through explicit treatment of the climate system's dominant nonlinearities: CO2 chemistry in ocean water, CO2 fertilization of land biota, and sublinear radiative forcing. The resultant nonlinear impulse-response model of the coupled carbon cycle-climate system (NICCS) computes the temporal evolution of spatial patterns of climate change for four climate variables of particular relevance for climate impact studies: near-surface temperature, cloud cover, precipitation, and sea level. The space-time response characteristics of the model are derived from an EOF analysis of a transient 850-year greenhouse warming simulation with the Hamburg atmosphere-ocean general circulation model ECHAM3-LSG and a similar response experiment with the Hamburg carbon cycle model HAMOCC. The model is applied to two long-term CO2 emission scenarios, demonstrating that the use of all currently estimated fossil fuel resources would carry the Earth's climate far beyond the range of climate change for which reliable quantitative predictions are possible today, and that even a freezing of emissions to present-day levels would cause a major global warming in the long term.

Journal ArticleDOI
TL;DR: In this paper, the authors compare the results of 17 climate models, 16 of which are atmospheric general circulation models, to the predictions of the Last Glacial Maximum (21 000 years ago) using the same set of boundary conditions.
Abstract: Under the framework of the Palaeoclimate Modelling Intercomparison Project (PMIP), 17 climate models, 16 of which are atmospheric general circulation models, have been run to simulate the climate of the Last Glacial Maximum (21 000 years ago) using the same set of boundary conditions. Parallel to these numerical experiments, new, consistent, data bases have been developed on a continental scale. The present work compares the range of the model responses to the large perturbation corresponding to the conditions of the Last Glacial Maximum with consistently derived climate reconstructions from pollen records over Europe and western Siberia. It accounts for the differences in the model results due to the models themselves and directly compares this ``error bar'' due to the models to the uncertainties in the climate reconstructions from the pollen records. Overall the Last Glacial Maximum climate simulated by the models over western Europe is warmer, especially in winter, and wetter than the one depicted by the reconstructions. This is the region where the reconstructed increase in temperature, precipitation and moisture index from the Last Glacial Maximum to the present conditions is largest. The same disagreement, but of smaller amplitude, is found over Central Europe and the eastern Mediterranean Basin, while models and data are in broad agreement over western Siberia. The numerous modelling results allow a study of the link between the changes in atmospheric circulation and those in temperature, and an interpretation of the discrepancies in precipitation in terms of those in temperature.

Journal ArticleDOI
TL;DR: In this article, two regional climate models have been applied to the task of generating an ensemble of realizations of the year 1982 with observed boundary conditions in areas covering parts of the Mediterranean countries.
Abstract: Two regional climate models have been applied to the task of generating an ensemble of realizations of the year 1982 with observed boundary conditions in areas covering parts of the Mediterranean countries. These realizations were generated by applying boundary conditions from the ECMWF ERA reanalysis project consecutively, carrying over the soil variables from the regional models from one iteration to the next. Monthly mean fields for six iterations of each model have been used as statistical ensembles in order to investigate the internal variability of the regional model dynamics. This internal variability is a necessary consequence of the non-linear physical feedback mechanisms of the RCM being active. A small value of internal variability will give better statistics for climate sensitivity signals, but will make these results less credible. The internal variability is important for the quantitative assessment of a climate sensitivity signal. With the present choice of models and integration domains the internal variabilities of surface fields and precipitation do reach levels that are less than, but in summer of comparable order of magnitude to, corresponding atmospheric variabilities of an atmospheric general circulation model.

Journal ArticleDOI
TL;DR: In this article, a hemispherically averaged upwelling-diffusion energy-balance climate model (UD/EBM) is used to simulate the surface air temperature change and sea-level rise due to thermal expansion, predicted by the HadCM2 coupled atmosphere-ocean general circulation model, for various scenarios of anthropogenic radiative forcing over 1860-2100.
Abstract: We demonstrate that a hemispherically averaged upwelling-diffusion energy-balance climate model (UD/EBM) can emulate the surface air temperature change and sea-level rise due to thermal expansion, predicted by the HadCM2 coupled atmosphere-ocean general circulation model, for various scenarios of anthropogenic radiative forcing over 1860–2100. A climate sensitivity of 2.6 °C is assumed, and a representation of the effect of sea-ice retreat on surface air temperature is required. In an extended experiment, with CO2 concentration held constant at twice the control run value, the HadCM2 effective climate sensitivity is found to increase from about 2.0 °C at the beginning of the integration to 3.85 °C after 900 years. The sea-level rise by this time is almost 1.0 m and the rate of rise fairly steady, implying that the final equilibrium value (the `commitment') is large. The base UD/EBM can fit the 900-year simulation of surface temperature change and thermal expansion provided that the time-dependent climate sensitivity is specified, but the vertical profile of warming in the ocean is not well reproduced. The main discrepancy is the relatively large mid-depth warming in the HadCM2 ocean, that can be emulated by (1) diagnosing depth-dependent diffusivities that increase through time; (2) diagnosing depth-dependent diffusivities for a pure-diffusion (zero upwelling) model; or (3) diagnosing higher depth-dependent diffusivities that are applied to temperature perturbations only. The latter two models can be run to equilibrium, and with a climate sensitivity of 3.85 °C, they give sea-level rise commitments of 1.7 m and 1.3 m, respectively.

Journal ArticleDOI
TL;DR: In this article, the authors examined the effect of coupled ocean/atmosphere interactions over the North Pacific that involve ocean dynamics, as opposed to either purely thermodynamic effects of the oceanic mixed layer integrating in situ the stochastic atmospheric forcing, or the teleconnected response to tropical variability.
Abstract: Decadal time scale climate variability in the North Pacific has implications for climate both locally and over North America. A crucial question is the degree to which this variability arises from coupled ocean/atmosphere interactions over the North Pacific that involve ocean dynamics, as opposed to either purely thermodynamic effects of the oceanic mixed layer integrating in situ the stochastic atmospheric forcing, or the teleconnected response to tropical variability. The part of the variability that is coming from local coupled ocean/atmosphere interactions involving ocean dynamics is potentially predictable by an ocean/atmosphere general circulation model (O/A GCM), and such predictions could (depending on the achievable lead time) have distinct societal benefits. This question is examined using the results of fully coupled O/A GCMs, as well as targeted numerical experiments with stand-alone ocean and atmosphere models individually. It is found that coupled ocean/atmosphere interactions that involve ocean dynamics are important to determining the strength and frequency of a decadal-time scale peak in the spectra of several oceanic variables in the Kuroshio extension region off Japan. Local stochastic atmospheric heat flux forcing, integrated by the oceanic mixed layer into a red spectrum, provides a noise background from which the signal must be extracted. Although teleconnected ENSO responses influence the North Pacific in the 2–7 years/cycle frequency band, it is shown that some decadal-time scale processes in the North Pacific proceed without ENSO. Likewise, although the effects of stochastic atmospheric forcing on ocean dynamics are discernible, a feedback path from the ocean to the atmosphere is suggested by the results.

Journal ArticleDOI
TL;DR: In this article, a seasonally and regionally differentiated glacier model is used to estimate the contribution that glaciers are likely to make to global sea level rise over a period of 70 years.
Abstract: A seasonally and regionally differentiated glacier model is used to estimate the contribution that glaciers are likely to make to global sea level rise over a period of 70 years. A high resolution general circulation model (ECHAM4 T106) is used to estimate temperature and precipitation changes for a doubled CO2 climate and serves as input for the glacier model. Volume-area relations are used to take into account the reduction of glacier area resulting from greenhouse warming. Each glacieriated region has a specified glacier size distribution, defined by the number of glaciers in a size class and a mean area. Changes in glacier volume are calculated by a precipitation dependent mass balance sensitivity. The model predicts a global sea level rise of 57 mm over a period of 70 years. This corresponds to a sensitivity of 0.86 mm yr−1K−1. Assuming a constant glacier area as done in earlier work leads to an overestimation of 19% for the contribution to sea level rise.

Journal ArticleDOI
TL;DR: In this paper, the effect of anthropogenic sulfate aerosols on the albedo and lifetime of clouds was investigated and the linearity of the two indirect effects on the model response was also investigated by including each effect separately in the model.
Abstract: The indirect effects of anthropogenic sulfate aerosols on the albedo and lifetime of clouds may produce a significant impact on the climate system. A `state of the art' general circulation model (GCM) which includes an interactive sulfur cycle and a physically based cloud microphysics scheme is coupled to a mixed-layer ocean model in order to study the impact of the indirect effects on the coupled climate system. The linearity of the two indirect effects on the model response is also investigated by including each effect separately in the model. The response of the sea surface temperatures (SSTs) and sea ice is found to provide an important feedback on the cooling at high latitudes and the change in meridional SST gradient results in a southward shift of the inter-tropical convergence zone (ITCZ). The sensitivity of the model to the forcing from the indirect effects of sulfate aerosol is found to be similar to, but slightly weaker than that obtained from a doubling of CO2.