scispace - formally typeset
Search or ask a question

Showing papers in "Earthquake Engineering & Structural Dynamics in 2017"


Journal ArticleDOI
TL;DR: In this paper, the authors presented experimental and numerical studies on a scaled self-centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni-Ti wires.
Abstract: Summary Given their excellent self-centering and energy-dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self-centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two-story one-bay steel frame. The equivalent viscous damping ratio and ‘post-yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self-centering capacity and pin-connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic-resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.

208 citations


Journal ArticleDOI
TL;DR: In this paper, the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations were discussed. But the authors focused not exclusively on the primary structure response but also on the secondary one.
Abstract: Summary The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two-terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single-degree-of-freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non-conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non-conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd.

188 citations




Journal ArticleDOI
TL;DR: In this paper, the authors present a recasting of conditional spectrum record selection that is based on AvgSA over a period range as the conditioning seismic intensity measure for building response estimation whose hazard can be evaluated using existing ground motion prediction equations.
Abstract: Summary The use of a seismic intensity measure (IM) is paramount in decoupling seismic hazard and structural response estimation when assessing the performance of structures. For this to be valid, the IM needs to be sufficient;that is, the engineering demand parameter (EDP) response should be independent of other ground motion characteristics when conditioned on the IM. Whenever non-trivial dependence is found, such as in the case of the IM being the first-mode spectral acceleration, ground motion selection must be employed to generate sets of ground motion records that are consistent vis-a-vis the hazard conditioned on the IM. Conditional spectrum record selection is such a method for choosing records that are consistent with the site-dependent spectral shape conditioned on the first-mode spectral acceleration. Based on a single structural period, however the result may be suboptimal, or insufficient, for EDPs influenced by different period values, for example, peak interstory drifts or peak floor accelerations at different floors, potentially requiring different record suites for each. Recently, the log-average spectral acceleration over a period range, AvgSA, has emerged as an improved scalar IM for building response estimation whose hazard can be evaluated using existing ground motion prediction equations. Herein, we present a recasting of conditional spectrum record selection that is based on AvgSA over a period range as the conditioning IM. This procedure ensures increased efficiency and sufficiency in simultaneously estimating multiple EDPs by means of a single IM. Copyright © 2017 John Wiley & Sons, Ltd.

151 citations


Journal ArticleDOI
TL;DR: In this article, a particle tuned mass damper (PTMD) is proposed to achieve significant damping effects under seismic excitations, and the bandwidth of the suppression frequency is expanded, showing the device's robustness and control efficiency.
Abstract: Summary A particle tuned mass damper (PTMD), which is a creative integration of a traditional tuned mass damper and an efficient particle damper in the vibration control area, is proposed. This paper presents a comprehensive study that involves experimental, analytical, and computational approaches. The vibration control effects of a PTMD that is attached to a five-story steel frame under seismic input are investigated by a series of shaking table tests. The influence of some parameters (auxiliary mass ratio, gap clearance, mass ratio of particles to the total auxiliary mass, frequency characteristics, and amplitude level of the input) is explored, and the performance of the PTMD with/without buffered material is compared. The experimental results show that the PTMD can achieve significant damping effects under seismic excitations, and the bandwidth of the suppression frequency is expanded, showing the device's robustness and control efficiency. In addition, an approximately analytical solution that is based on the concept of an equivalent single-particle damper is presented, and the method to determine the corresponding system parameters is introduced. A comparative study between experimental and numerical results is conducted to verify the feasibility and accuracy of this analytical model. Copyright © 2016 John Wiley & Sons, Ltd.

121 citations


Journal ArticleDOI
TL;DR: In this paper, the authors derived the limit state exceedance probability for an existing reinforced concrete moment-resisting frame with infills subjected to the main seismic event and the triggered sequence.
Abstract: Summary Calculating the limit state (LS) exceedance probability for a structure considering the main seismic event and the triggered aftershocks (AS) is complicated both by the time-dependent rate of aftershock occurrence and also by the cumulative damage caused by the sequence of events. Taking advantage of a methodology developed previously by the authors for post-mainshock (MS) risk assessment, the LS probability due to a sequence of mainshock and the triggered aftershocks is calculated for a given aftershock forecasting time window. The proposed formulation takes into account both the time-dependent rate of aftershock occurrence and also the damage accumulation due to the triggered aftershocks. It is demonstrated that an existing reinforced concrete moment-resisting frame with infills subjected to the main event and the triggered sequence exceeds the near-collapse LS. On the other hand, the structure does not reach the onset of near-collapse LS when the effect of triggered aftershocks is not considered. It is shown, based on simplifying assumptions, that the derived formulation yields asymptotically to the same Poisson-type functional form used when the cumulative damage is not being considered. This leads to a range of approximate solutions by substituting the fragilities calculated for intact, MS-damaged, and MS-plus-one-AS-damaged structures in the asymptotic simplified formulation. The latter two approximate solutions provide good agreement with the derived formulation. Even when the fragility of intact structure is employed, the approximate solution (considering only the time-dependent rate of aftershock occurrence) leads to higher risk estimates compared with those obtained based on only the mainshock. Copyright © 2016 John Wiley & Sons, Ltd.

85 citations


Journal ArticleDOI
TL;DR: In this paper, a finite element model to analyze the seismic response of deformable bodies and structures is presented, which comprises a set of beam elements to represent the rocking body and zero-length fiber cross-section elements at the ends of the rocking surfaces.
Abstract: Summary A new finite element model to analyze the seismic response of deformable rocking bodies and rocking structures is presented. The model comprises a set of beam elements to represent the rocking body and zero-length fiber cross-section elements at the ends of the rocking body to represent the rocking surfaces. The energy dissipation during rocking motion is modeled using a Hilber–Hughes–Taylor numerically dissipative time step integration scheme. The model is verified through correct prediction of the horizontal and vertical displacements of a rigid rocking block and validated against the analytical Housner model solution for the rocking response of rigid bodies subjected to ground motion excitation. The proposed model is augmented by a dissipative model of the ground under the rocking surface to facilitate modeling of the rocking response of deformable bodies and structures. The augmented model is used to compute the overturning and uplift rocking response spectra for a deformable rocking frame structure to symmetric and anti-symmetric Ricker pulse ground motion excitation. It is found that the deformability of the columns of a rocking frame does not jeopardize its stability under Ricker pulse ground motion excitation. In fact, there are cases where a deformable rocking frame is more stable than its rigid counterpart. Copyright © 2016 John Wiley & Sons, Ltd.

85 citations


Journal ArticleDOI
TL;DR: In this article, a new methodology for the development of bridge-specific fragility curves is proposed with a view to improving the reliability of loss assessment in road networks and prioritising retrofit of the bridge stock.
Abstract: A new methodology for the development of bridge-specific fragility curves is proposed with a view to improving the reliability of loss assessment in road networks and prioritising retrofit of the bridge stock. The key features of the proposed methodology are the explicit definition of critical limit state thresholds for individual bridge components, with consideration of the effect of varying geometry, material properties, reinforcement and loading patterns on the component capacity; the methodology also includes the quantification of uncertainty in capacity, demand and damage state definition. Advanced analysis methods and tools (nonlinear static analysis and incremental dynamic response history analysis) are used for bridge component capacity and demand estimation, while reduced sampling techniques are used for uncertainty treatment. Whereas uncertainty in both capacity and demand is estimated from nonlinear analysis of detailed inelastic models, in practical application to bridge stocks, the demand is estimated through a standard response spectrum analysis of a simplified elastic model of the bridge. The simplified methodology can be efficiently applied to a large number of bridges (with different characteristics) within a road network, by means of an ad hoc developed software involving the use of a generic (elastic) bridge model, which derives bridge-specific fragility curves.

79 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed seismic reliability-based relationship between the strength reduction factors and the displacement ductility demand of nonlinear structural systems equipped with friction pendulum isolators (FPS) depending on the structural properties.
Abstract: The aim of this work is to propose seismic reliability-based relationships between the strength reduction factors and the displacement ductility demand of nonlinear structural systems equipped with friction pendulum isolators (FPS) depending on the structural properties. The isolated structures are described by employing an equivalent 2dof model characterized by a perfectly elastoplastic rule to account for the inelastic response of the superstructure, whereas, the FPS behavior is described by a velocity-dependent model. An extensive parametric study is carried out encompassing a wide range of elastic and inelastic building properties, different seismic intensity levels and considering the friction coefficient as a random variable. Defined a set of natural seismic records and scaled to the seismic intensity corresponding to life safety limit state for L'Aquila site (Italy) according to NTC08, the inelastic characteristics of the superstructures are designed as the ratio between the average elastic responses and increasing strength reduction factors. Incremental dynamic analyses (IDAs) are developed to evaluate the seismic fragility curves of both the inelastic superstructure and the isolation level assuming different values of the corresponding limit states. Integrating the fragility curves with the seismic hazard curves related to L'Aquila site (Italy), the reliability curves of the equivalent inelastic base-isolated structural systems, with a design life of 50 years, are derived proposing seismic reliability-based regression expressions between the displacement ductility demand and the strength reduction factors for the superstructure as well as seismic reliability-based design (SRBD) abacuses useful to define the FPS properties.

73 citations


Journal ArticleDOI
TL;DR: In this article, an analytical study that quantifies the expected earthquake-induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions is presented, showing that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building.
Abstract: This paper discusses an analytical study that quantifies the expected earthquake-induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions. It is shown that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building. For frequently occurring seismic events building losses are dominated by non-structural content repairs. In this case, the choice of the analytical model representation of the steel frame building becomes less important. Losses due to demolition and collapse in steel frame buildings with special moment frames designed with strong-column/weak-beam ratio larger than 2.0 are reduced by a factor of two compared with those in the same frames designed with a strong-column/weak-beam ratio larger than 1.0 as recommended in ANSI/AISC-341-10. The expected annual losses (EALs) of steel frame buildings with SMFs vary from 0.38% to 0.74% over the building life expectancy. The EALs are dominated by repairs of acceleration-sensitive non-structural content followed by repairs of drift-sensitive non-structural components. It is found that the effect of strong-column/weak-beam ratio on EALs is negligible. This is not the case when the present value of life-cycle costs is selected as a loss-metric. It is advisable to employ a combination of loss-metrics to assess the earthquake-induced losses in steel frame buildings with special moment frames depending on the seismic performance level of interest.

Journal ArticleDOI
TL;DR: In this article, the authors show that there is a non-negligible influence of the site, the degree of which depends on the intensity measure adopted for assessment, and they propose an approach for incorporating the effect of site dependence into fragility and vulnerability estimates.
Abstract: Summary When performing loss assessment of a geographically dispersed building portfolio, the response or loss (fragility or vulnerability) function of any given archetype building is typically considered to be a consistent property of the building itself. On the other hand, recent advances in record selection have shown that the seismic response of a structure is, in general, dependent on the nature of the hazard at the site of interest. This apparent contradiction begs the question: Are building fragility and vulnerability functions independent of site, and if not, what can be done to avoid having to reassess them for each site of interest? In the following, we show that there is a non-negligible influence of the site, the degree of which depends on the intensity measure adopted for assessment. Employing a single-period (e.g., first-mode), spectral acceleration would require careful record selection at each site and result to significant site-to-site variability of the fragility or vulnerability function. On the other hand, an intensity measure comprising the geometric mean of multiple spectral accelerations considerably reduces such variability. In tandem with a conditional spectrum record selection that accounts for multiple sites, it can offer a viable approach for incorporating the effect of site dependence into fragility and vulnerability estimates. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: A parameterized stochastic model of near-fault ground motion in two orthogonal horizontal directions is developed in this paper, which accounts for both pulse-like and non-pulse-like cases.
Abstract: Summary A parameterized stochastic model of near-fault ground motion in two orthogonal horizontal directions is developed. The major characteristics of recorded near-fault ground motions are represented. These include near-fault effects of directivity and fling step; temporal and spectral non-stationarity; intensity, duration, and frequency content characteristics; directionality of components; and the natural variability of ground motions. Not all near-fault ground motions contain a forward directivity pulse, even when the conditions for such a pulse are favorable. The proposed model accounts for both pulse-like and non-pulse-like cases. The model is fitted to recorded near-fault ground motions by matching important characteristics, thus generating an ‘observed’ set of model parameters for different earthquake source and site characteristics. A method to generate and post-process synthetic motions for specified model parameters is also presented. Synthetic ground motion time series are generated using fitted parameter values. They are compared with corresponding recorded motions to validate the proposed model and simulation procedure. The use of synthetic motions in addition to or in place of recorded motions is desirable in performance-based earthquake engineering applications, particularly when recorded motions are scarce or when they are unavailable for a specified design scenario. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, a steel column base with post-tensioned (PT) high strength steel bars is used to control rocking behavior and friction devices (FDs) to dissipate seismic energy.
Abstract: Earthquake resilient steel frames, such as self-centering frames or frames with passive energy dissipation devices, have been extensively studied during the past decade but little attention has been paid to their column bases. The paper presents a rocking damage-free steel column base, which uses post-tensioned (PT) high strength steel bars to control rocking behavior and friction devices (FDs) to dissipate seismic energy. Contrary to conventional steel column bases, the rocking column base exhibits monotonic and cyclic moment-rotation behaviors that are easily described using simple analytical equations. Analytical equations are provided for different cases including structural limit states that involve yielding or loss of post-tensioning in the PT bars. A step-by-step design procedure is presented, which ensures damage-free behavior, self-centering capability, and adequate energy dissipation capacity for a predefined target rotation. A 3D nonlinear finite element (FE) model of the column base is developed in ABAQUS. The results of the FE simulations validate the accuracy of the moment-rotation analytical equations and demonstrate the efficiency of the design procedure. Moreover, a simplified model for the column base is developed in OpenSees. Comparisons among the OpenSees and ABAQUS models demonstrate the efficiency of the former and its adequacy to be used in nonlinear dynamic analysis. A prototype steel building is designed as a self-centering moment-resisting frame with conventional or rocking column bases. Nonlinear dynamic analyses show that the rocking column base fully protects the first story columns from yielding and eliminate the first story residual drift without any detrimental effect on peak interstory drifts. The study focuses on the 2D rocking motion, and thus, ignores 3D rocking effects such as biaxial bending deformations in the FDs. The FE models, the analytical equations, and the design procedure will be updated and validated to cover 3D rocking motion effects after forthcoming experimental tests on the column base.

Journal ArticleDOI
TL;DR: In this paper, the seismic reliability of elastic structural systems equipped with friction pendulum isolators (friction pendulum system) is analyzed by employing a two-degree-of-freedom model accounting for the superstructure flexibility.
Abstract: Summary The paper deals with the seismic reliability of elastic structural systems equipped with friction pendulum isolators (friction pendulum system). The behavior of these systems is analyzed by employing a two-degree-of-freedom model accounting for the superstructure flexibility, whereas the friction pendulum system device behavior is described by adopting a widespread model that considers the variation of the friction coefficient with the velocity. With reference to medium soil condition, the uncertainty in the seismic inputs is taken into account by considering a set of artificial records, obtained through Monte Carlo simulations within the power spectral density method, with different frequency contents and characteristics depending on the soil dynamic parameters and scaled to increasing intensity levels. The sliding friction coefficient at large velocity is also considered as random variable modeled through a uniform probability density function. Incremental dynamic analyses are developed in order to evaluate the probabilities exceeding different limit states related to both r.c. superstructure and isolation level defining the seismic fragility curves through an extensive parametric study carried out for different structural system properties. Finally, considering the seismic hazard curves related to a site near L'Aquila (Italy), the seismic reliability of the r.c. superstructure systems is evaluated, and seismic reliability-based design abacuses are derived with the aim to define the radius in plan of the friction pendulum devices in function of the structural properties and reliability level expected. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, the seismic performance of a hybrid coupled wall (HCW) system with replaceable steel coupling beams (RSCBs) at four intensities of ground motion shaking was assessed via nonlinear dynamic analysis.
Abstract: Summary This study assesses the seismic performance of a hybrid coupled wall (HCW) system with replaceable steel coupling beams (RSCBs) at four intensities of ground motion shaking. The performance of the HCW system is benchmarked against the traditional reinforced concrete coupled wall (RCW). Nonlinear numerical models are developed in OpenSees for a representative wall elevation in a prototype 11-story building designed per modern Chinese codes. Performance is assessed via nonlinear dynamic analysis. The results indicate that both systems can adequately meet code defined objectives in terms of global and component behavior. Behavior of the two systems is consistent under service level earthquakes, whereas under more extreme events, the HCW system illustrates enhanced performance over the RCW system resulting in peak interstory drifts up to 31% lower in the HCW than the RCW. Larger drifts in the RCW are because of reduced coupling action induced by stiffness degradation of RC coupling beams, whereas the stable hysteretic responses and overstrength of RSCBs benefit post-yield behavior of the HCW. Under extreme events, the maximum beam rotations of the RSCBs are up to 42% smaller than those of the RC coupling beams. Moderate to severe damage is expected in the RC coupling beams, whereas the RSCBs sustain damage to the slab above the beam and possible web buckling of shear links. The assessment illustrates the benefits of the HCW with RSCBs over the RCW system, because of easy replacement of the shear links as opposed to costly and time-consuming repairs of RC coupling beams. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, the impact of sample variability on fragility functions and the resulting seismic structural risk is quantified using simple statistical tools, which can aid the analyst towards the assessment of the impact.
Abstract: Summary State-of-the-art approaches to probabilistic assessment of seismic structural reliability are based on simulation of structural behavior via nonlinear dynamic analysis of computer models. Simulations are carried out considering samples of ground motions supposedly drawn from specific populations of signals virtually recorded at the site of interest. This serves to produce samples of structural response to evaluate the failure rate, which in turn allows to compute the failure risk (probability) in a time interval of interest. This procedure alone implies that uncertainty of estimation affects the probabilistic results. The latter is seldom quantified in risk analyses, although it may be relevant. This short paper discusses some basic issues and some simple statistical tools, which can aid the analyst towards the assessment of the impact of sample variability on fragility functions and the resulting seismic structural risk. On the statistical inference side, the addressed strategies are based on consolidated results such as the well-known delta method and on some resampling plans belonging to the bootstrap family. On the structural side, they rely on assumptions and methods typical in performance-based earthquake engineering applications. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, a shake table study was conducted on four single rocking walls (SRWs) using multiple-level earthquake input motions, and the performance was assessed in terms of the maximum transient drift, maximum absolute acceleration, and residual drift.
Abstract: Summary Precast concrete walls with unbonded post-tensioning provide a simple self-centering system. Yet, its application in seismic regions is not permitted as it is assumed to have no energy dissipation through a hysteretic mechanism. These walls, however, dissipate energy imparted to them because of the wall impacting the foundation during rocking and limited hysteretic action resulting from concrete nonlinearity. The energy dissipated due to rocking was ignored in previous experimental studies because they were conducted primarily using quasi-static loading. Relying only on limited energy dissipation, a shake table study was conducted on four single rocking walls (SRWs) using multiple-level earthquake input motions. All walls generally performed satisfactorily up to the design-level earthquakes when their performance was assessed in terms of the maximum transient drift, maximum absolute acceleration, and residual drift. However, for the maximum considered earthquakes, the walls experienced peak lateral drifts greater than the permissible limits. Combining the experimental results with an analytical investigation, it is shown that SRWs can be designed as earthquake force-resisting elements to produce satisfactory performance under design-level and higher-intensity earthquake motions. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, the influence of ground motion duration on structural damage of 3-story, 9-story and 20-story SAC steel moment resisting frame buildings designed for downtown Seattle, WA, USA, using pre-Northridge codes.
Abstract: This paper presents an analytical study evaluating the influence of ground motion duration on structural damage of 3-story, 9-story, and 20-story SAC steel moment resisting frame buildings designed for downtown Seattle, WA, USA, using pre-Northridge codes. Two-dimensional nonlinear finite element models of the buildings are used to estimate the damage induced by the ground motions. A set of 44 ground motions is used to study the combined effect of spectral acceleration and ground motion significant duration on drift and damage measures. In addition, 10 spectrally equivalent short-duration shallow crustal ground motions and long-duration subduction zone records are selected to isolate duration effect and assess its effect on the response. For each ground motion pair, incremental dynamic analyses are performed at at least 20 intensity levels and response measures such as peak interstory drift ratio and energy dissipated are tracked. These response measures are combined into two damage metrics that account for the ductility and energy dissipation. Results indicate that the duration of the ground motion influences, above all, the combined damage measures, although some effect on drift-based response measures is also observed for larger levels of drift. These results indicate that because the current assessment methodologies do not capture the effects of ground motion duration, both performance-based and code-based assessment methodologies should be revised to consider damage measures that are sensitive to duration.

Journal ArticleDOI
TL;DR: In this article, a dynamic model for analysis of the in-plane seismic response of rocking podium structures and to investigate if Polyakov's rule-of-thumb guidelines are adequate for the design of such structures are presented.
Abstract: Summary A rocking podium structure is a class of structures consisting of a superstructure placed on top of a rigid slab supported by free-standing columns. The free-standing columns respond to sufficiently strong ground motion excitation by uplifting and rocking. Uplift works as a mechanical fuse that limits the forces transmitted to the superstructure, while rocking enables large lateral displacements. Such ‘soft-story’ system runs counter to the modern seismic design philosophy but has been used to construct several hundred buildings in countries of the former USSR following Polyakov's rule-of-thumb guidelines: (i) that the superstructure behave as a rigid body and (ii) that the maximum lateral displacement of the rocking podium frame be estimated using elastic earthquake displacement response spectra. The objectives of this paper are to present a dynamic model for analysis of the in-plane seismic response of rocking podium structures and to investigate if Polyakov's rule-of-thumb guidelines are adequate for the design of such structures. Examination of the rocking podium structure response to analytical pulse and recorded ground motion excitations shows that the rocking podium structures are stable and that Polyakov's rule-of-thumb guidelines produce generally conservative designs. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, the seismic fragility of precast reinforced concrete buildings using observational damage data gathered after the 2012 Emilia earthquakes that struck Northern Italy was analyzed using Bayesian regression.
Abstract: Summary The paper analyses the seismic fragility of precast reinforced concrete buildings using observational damage data gathered after the 2012 Emilia earthquakes that struck Northern Italy. The damage level in 1890 buildings was collected, classified and examined. Damage matrices were then evaluated, and finally, empirical fragility curves were fitted using Bayesian regression. Building damage was classified using a six-level scale derived from EMS-98. The completeness of the database and the spatial distribution of the buildings investigated were analysed using cadastral data as a reference. The intensity of the ground motion was quantified by the maximum horizontal peak ground acceleration, which was obtained from ShakeMaps. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, the damping coefficients of the dampers and the stiffness coefficients of supporting braces are designed by an optimization algorithm, subject to constraints on inter-story drifts at the peripheries of frame structures.
Abstract: Summary This paper presents an effective approach for achieving minimum-cost designs for seismic retrofitting using nonlinear fluid viscous dampers. The damping coefficients of the dampers and the stiffness coefficients of the supporting braces are designed by an optimization algorithm. A realistic retrofitting cost function is minimized subject to constraints on inter-story drifts at the peripheries of frame structures. The cost function accounts for costs related to both the topology and the sizes of the dampers. The behavior of each damper-brace element is defined by the Maxwell model, where the force–velocity relation of the nonlinear dampers is formulated with a fractional power law. The optimization problem is first posed and solved as a mixed integer problem. For the reduction of the computational effort required in the optimization, the problem is then reformulated with continuous variables only and solved with a gradient-based algorithm. Material interpolation techniques, which have been successfully applied in topology optimization and in multi-material optimization, play a key role in achieving practical final design solutions with a reasonable computational effort. Promising results attained for 3-D irregular frames are presented and discussed. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, a 3D dynamic model of a bounded rigid cylinder with two DOF is presented, which is the simplest 3D extension of Housner's two-dimensional (2D) model.
Abstract: Summary In order to use rocking as a seismic response modification strategy along both directions of seismic excitation, a three-dimensional (3D) rocking model should be developed. Since stepping or rolling rocking structural members out of their initial position is not a desirable performance, a rocking design should not involve these modes of motion. To this end, a model that takes the aforementioned constraint into account needs to be developed. This paper examines the 3D motion of a bounded rigid cylinder that is allowed to uplift and sustain rocking and wobbling (unsteady rolling) motion without sliding or rolling out of its initial position (i.e., a 3D inverted pendulum). Thus, the cylinder is constrained to zero residual displacement at the end of its 3D motion. This 3D dynamic model of the rocking rigid cylinder has two DOFs (three when damping is included), making it the simplest 3D extension of Housner's classical two-dimensional (2D) rocking model. The development of models with and without damping is presented first. They are simple enough to perform extensive parametric analyses. Modes of motion of the cylinder are identified and presented. Then, 3D rocking and wobbling earthquake response spectra are constructed and compared with the classical 2D rocking earthquake response spectra. The 3D bounded rocking earthquake response spectra for the ground motions considered seem to have a very simple linear form. Finally, it is shown that the use of a 2D rocking model may lead to unacceptably unconservative estimates of the 3D rocking and wobbling seismic response. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, drift-based fragility functions are developed for in-plane loaded masonry infills, derived from a comprehensive experimental data set gathered from current literature, comprising 152 masonry inlays with different geometries and built with different types of masonry blocks, when tested under lateral cyclic loading.
Abstract: Summary Recent seismic events have provided evidence that damage to masonry infills can lead not only to large economic losses but also to significant injuries and even fatalities. The estimation of damage of such elements and the corresponding consequences within the performance-based earthquake engineering framework requires the construction of reliable fragility functions. In this paper, drift-based fragility functions are developed for in-plane loaded masonry infills, derived from a comprehensive experimental data set gathered from current literature, comprising 152 masonry infills with different geometries and built with different types of masonry blocks, when tested under lateral cyclic loading. Three damage states associated with the structural performance and reparability of masonry infill walls are defined. The effect of mortar compression strength, masonry prism compression strength, and presence of openings is evaluated and incorporated for damage states where their influence is found to be statistically significant. Uncertainty due to specimen-to-specimen variability and sample size is quantified and included in the proposed fragility functions. It is concluded that prism strength and mortar strength are better indicators of the fragility of masonry infills than the type of bricks/blocks used, whose influence, in general, is not statistically significant for all damage states. Finally, the presence of openings is also shown to have statistically relevant impact on the level of interstory drift ratio triggering the lower damage states.

Journal ArticleDOI
TL;DR: In this article, a 1.5MW wind turbine steel support tower was modeled as a near-cylindrical shell structure with realistic axisymmetric weld depression imperfections and a selection of 20 representative earthquake ground motion records, 10 near-fault and 10 far-field, was applied and the aggregate seismic response explored using lateral drifts and total plastic energy dissipation during the earthquake as structural demand parameters.
Abstract: The global growth in wind energy suggests that wind farms will increasingly be deployed in seismically active regions, with large arrays of similarly designed structures potentially at risk of simultaneous failure under a major earthquake. Wind turbine support towers are often constructed as thin-walled metal shell structures, well known for their imperfection sensitivity, and are susceptible to sudden buckling failure under compressive axial loading. This study presents a comprehensive analysis of the seismic response of a 1.5-MW wind turbine steel support tower modelled as a near-cylindrical shell structure with realistic axisymmetric weld depression imperfections. A selection of 20 representative earthquake ground motion records, 10 ‘near-fault’ and 10 ‘far-field’, was applied and the aggregate seismic response explored using lateral drifts and total plastic energy dissipation during the earthquake as structural demand parameters. The tower was found to exhibit high stiffness, although global collapse may occur soon after the elastic limit is exceeded through the development of a highly unstable plastic hinge under seismic excitations. Realistic imperfections were found to have a significant effect on the intensities of ground accelerations at which damage initiates and on the failure location, but only a small effect on the vibration properties and the response prior to damage. Including vertical accelerations similarly had a limited effect on the elastic response, but potentially shifts the location of the plastic hinge to a more slender and, therefore, weaker part of the tower. The aggregate response was found to be significantly more damaging under near-fault earthquakes with pulse-like effects and large vertical accelerations than far-field earthquakes without these aspects.

Journal ArticleDOI
TL;DR: In this article, one-third scale laboratory tests were conducted to on a 2-story 2-bay TFP-isolated structure and a numerical model was presented to simulate the isolated building up to and including bearing failure.
Abstract: Summary While isolation can provide significantly enhanced performance compared to fixed-base counter parts in design level or even maximum considered level earthquakes, there is still uncertainty over the performance of isolation systems in extreme events. Researchers have looked at component level stability of rubber bearings and on the effect of moat impact on behavior of structures isolated on general bilinear isolators. However, testing of triple friction pendulum (TFP) sliding bearings has not been done dynamically or incorporated into a building system. Here, one-third scale laboratory tests were conducted to on a 2-story 2-bay TFP-isolated structure. Input motions were increasingly scaled until failure occurred at the isolation level. As the superstructure was designed with a yield force equivalent to the force of the bearing just at their ultimate displacement capacity, there was minimal yielding. A numerical model is presented to simulate the isolated building up to and including bearing failure. Forces transferred to the superstructure in extreme motions are examined using both experimental and numerical data. Additionally, the effect of the hardening stage of the TFP bearing is evaluated using the numerical model, finding slight benefits.

Journal ArticleDOI
TL;DR: In this article, a probabilistic assessment of the influence of joints on the seismic behavior of a non-ductile reinforced concrete (RC) building is performed by means of a scaling approach.
Abstract: Summary The seismic response of non-ductile reinforced concrete (RC) buildings can be affected by the behaviour of beam-column joints involved in the failure mechanism, especially in typical existing buildings. Conventional modelling approaches consider only beam and column flexibility, although joints can provide a significant contribution also to the overall frame deformability. In this study, the attention is focused on exterior joints without transverse reinforcement, and a possible approach to their modelling in nonlinear seismic analysis of RC frames is proposed. First, experimental tests performed by the authors are briefly presented, and their results are discussed. Second, these tests, together with other tests with similar features from literature, are employed to calibrate the joint panel deformability contribution in order to reproduce numerically the experimental joint shear stress–strain behaviour under cyclic loading. After a validation phase of this proposal, a numerical investigation of the influence of joints on the seismic behaviour of a case study RC frame – designed for gravity loads only – is performed. The preliminary failure mode classification of the joints within the analysed frame is carried out. Structural models that (i) explicitly include nonlinear behaviour of beam-column joints exhibiting shear or anchorage failure or (ii) model joints as elements with infinite strength and stiffness are built and their seismic performance are assessed and compared. A probabilistic assessment based on nonlinear dynamic simulations is performed by means of a scaling approach to evaluate the seismic response at different damage states accounting for uncertainties in ground-motion records. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, a direct finite element method is presented for nonlinear earthquake analysis of interacting dam-water-foundation rock systems, which applies viscous damper absorbing boundaries to truncate the semi-unbounded fluid and foundation-rock domains and specifies at these boundaries effective earthquake forces determined from the design ground motion defined at a control point on the free surface.
Abstract: Summary A direct finite element method is presented for nonlinear earthquake analysis of interacting dam–water–foundation rock systems. The analysis procedure applies viscous damper absorbing boundaries to truncate the semi-unbounded fluid and foundation-rock domains and specifies at these boundaries effective earthquake forces determined from the design ground motion defined at a control point on the free surface. The analysis procedure is validated numerically by computing the frequency response functions and transient response of an idealized dam–water–foundation rock system and comparing with results from the substructure method. Because the analysis procedure is applicable to nonlinear systems, it allows for modeling of concrete cracking, as well as sliding and separation at construction joints, lift joints, and at concrete–rock interfaces. Implementation of the procedure is facilitated by commercial finite element software with nonlinear material models that permit modeling of viscous damper boundaries and specification of effective earthquake forces at these boundaries. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, a simplified design suggestion for the estimation of maximum expected residual displacements for currently used friction pendulum systems is presented, based on controlled-displacement and seismic input experiments, both performed under unidirectional motion.
Abstract: Summary After an earthquake, non-negligible residual displacements may affect the serviceability of a base isolated structure, if the isolation system does not possess a good restoring capability. The permanent offset does not affect the performance unless the design is problematic for utilities, also considering possible concerns related to the maintenance of the devices. Starting from experimental and analytical results of previous studies, the restoring capability of Double Concave Friction Pendulum bearings is investigated in this paper. A simplified design suggestion for the estimation of maximum expected residual displacements for currently used friction pendulum systems is then validated. The study is based on controlled-displacement and seismic input experiments, both performed under unidirectional motion. Several shaking table tests have been carried out on a three-dimensional isolated specimen structure. The same sequence of seismic inputs was applied considering three different conditions of sliding surfaces corresponding to low, medium and high friction. The accumulation of residual displacements is also investigated by means of nonlinear dynamic analysis. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, the double friction pendulum (DFP) bearing at its physical displacement limit is investigated and a nonlinear viscoelastic impact model is included to simulate the impact between bearing components.
Abstract: Summary Although the behavior of friction sliding bearings is well understood, the failure behavior has not been thoroughly investigated. However, predicting and understanding the failure of bearings is an important key in designing isolated structures to minimize their collapse in extreme events, and thus, this study is critical. Because of its relative simplicity and particular availability in certain markets, the failure of the double friction pendulum (DFP) bearing at its physical displacement limit is investigated. The bearing is modeled with a rigid body model including inertia for each of the bearing components. A nonlinear viscoelastic impact model is included to simulate the impact between bearing components. As isolation systems are particularly vulnerable to long-period excitations, analytical pulses are used as input excitations to investigate the influences of pulse parameters on the failure of DFP. The influences of DFP design parameters are investigated as well. To confirm that the response to the analytical pulses correctly represents the behavior under long-period ground motions, wavelet analysis to is performed on 14 pairs of pulse-type ground motion records to extract their pulses, and the failure prediction made from the extracted analytical pulse is compared with the failure from the real ground motions. It is found that using the extracted pulses provides a good estimation for the failure prediction of the ground motions. Copyright © 2016 John Wiley & Sons, Ltd.