scispace - formally typeset
Search or ask a question

Showing papers in "Evolutionary Applications in 2014"


Journal ArticleDOI
TL;DR: Evidence for genetic adaptation to climate change has been found in some systems, but is still relatively scarce and it is clear that more studies are needed – and these must employ better inferential methods – before general conclusions can be drawn.
Abstract: Many studies have recorded phenotypic changes in natural populations and attributed them to climate change. However, controversy and uncertainty has arisen around three levels of inference in such studies. First, it has proven difficult to conclusively distinguish whether phenotypic changes are genetically based or the result of phenotypic plasticity. Second, whether or not the change is adaptive is usually assumed rather than tested. Third, inferences that climate change is the specific causal agent have rarely involved the testing – and exclusion – of other potential drivers. We here review the various ways in which the above inferences have been attempted, and evaluate the strength of support that each approach can provide. This methodological assessment sets the stage for 11 accompanying review articles that attempt comprehensive syntheses of what is currently known – and not known – about responses to climate change in a variety of taxa and in theory. Summarizing and relying on the results of these reviews, we arrive at the conclusion that evidence for genetic adaptation to climate change has been found in some systems, but is still relatively scarce. Most importantly, it is clear that more studies are needed – and these must employ better inferential methods – before general conclusions can be drawn. Overall, we hope that the present paper and special issue provide inspiration for future research and guidelines on best practices for its execution.

980 citations


Journal ArticleDOI
TL;DR: Factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species’ life history characteristics including generation time and breeding system, and degree and direction of gene flow are discussed.
Abstract: As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate change are clearly occurring. Of the 38 studies that met our criteria for inclusion, all found plastic or evolutionary responses, with 26 studies showing both. These responses, however, may be insufficient to keep pace with climate change, as indicated by eight of 12 studies that examined this directly. There is also mixed evidence for whether evolutionary responses are adaptive, and whether they are directly caused by contemporary climatic changes. We discuss factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species’ life history characteristics including generation time and breeding system, and degree and direction of gene flow. Future studies with standardized methodologies, especially those that use direct approaches assessing responses to climate change over time, and sharing of data through public databases, will facilitate better predictions of the capacity for plant populations to respond to rapid climate change.

465 citations


Journal ArticleDOI
TL;DR: Development and expanded use of methods capable of detecting evolutionary change are recommended, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change.
Abstract: The physical and ecological ‘fingerprints’ of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to ‘fine-grained’ population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change.

384 citations


Journal ArticleDOI
TL;DR: This tutorial is targeted at scientists with a background in conservation genetics, but more generally, provides useful practical guidance for researchers engaging in whole‐genome sequencing projects.
Abstract: Genome sequencing projects were long confined to biomedical model organisms and required the concerted effort of large consortia. Rapid progress in high-throughput sequencing technology and the simultaneous development of bioinformatic tools have democratized the field. It is now within reach for individual research groups in the eco-evolutionary and conservation community to generate de novo draft genome sequences for any organism of choice. Because of the cost and considerable effort involved in such an endeavour, the important first step is to thoroughly consider whether a genome sequence is necessary for addressing the biological question at hand. Once this decision is taken, a genome project requires careful planning with respect to the organism involved and the intended quality of the genome draft. Here, we briefly review the state of the art within this field and provide a step-by-step introduction to the workflow involved in genome sequencing, assembly and annotation with particular reference to large and complex genomes. This tutorial is targeted at scientists with a background in conservation genetics, but more generally, provides useful practical guidance for researchers engaging in whole-genome sequencing projects.

350 citations


Journal ArticleDOI
TL;DR: The literature is reviewed to disentangle the actions of evolutionary changes in response to selection induced by climate change versus changes due to individual plasticity, that is, the capacity of an individual to adjust its phenology to environmental variables, within the abundant literature on climate change effects on bird phenology.
Abstract: There are multiple observations around the globe showing that in many avian species, both the timing of migration and breeding have advanced, due to warmer springs. Here, we review the literature to disentangle the actions of evolutionary changes in response to selection induced by climate change versus changes due to individual plasticity, that is, the capacity of an individual to adjust its phenology to environmental variables. Within the abundant literature on climate change effects on bird phenology, only a small fraction of studies are based on individual data, yet individual data are required to quantify the relative importance of plastic versus evolutionary responses. While plasticity seems common and often adaptive, no study so far has provided direct evidence for an evolutionary response of bird phenology to current climate change. This assessment leads us to notice the alarming lack of tests for microevolutionary changes in bird phenology in response to climate change, in contrast with the abundant claims on this issue. In short, at present we cannot draw reliable conclusions on the processes underlying the observed patterns of advanced phenology in birds. Rapid improvements in techniques for gathering and analysing individual data offer exciting possibilities that should encourage research activity to fill this knowledge gap.

348 citations


Journal ArticleDOI
TL;DR: This review focuses largely on the potential for adaptive evolution in marine animals and plants and recommends initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits.
Abstract: I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe–host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches.

275 citations


Journal ArticleDOI
TL;DR: Some of the complexity of adaptation genetics is explored and it is argued that screening genome‐wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small‐effect loci and cryptic variation.
Abstract: Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework.

211 citations


Journal ArticleDOI
TL;DR: An overview of the evolutionary and ecological impacts of infectious diseases in wild salmon is provided and ways in which modern technologies can elucidate the microparasites of greatest potential import are suggested.
Abstract: Emerging diseases are impacting animals under high-density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations.

198 citations


Journal ArticleDOI
TL;DR: The utility of genomic data to inform conservation in highly exploited species with shallow population structure is demonstrated, and these markers and genomic regions are excellent candidates for future research and can be used to create high‐resolution panels for genetic monitoring and population assignment.
Abstract: Recent advances in population genomics have made it possible to detect previously unidentified structure, obtain more accurate estimates of demographic parameters, and explore adaptive divergence, potentially revolutionizing the way genetic data are used to manage wild populations. Here, we identified 10 944 single-nucleotide polymorphisms using restriction-site-associated DNA (RAD) sequencing to explore population structure, demography, and adaptive divergence in five populations of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Patterns of population structure were similar to those of past studies, but our ability to assign individuals back to their region of origin was greatly improved (>90% accuracy for all populations). We also calculated effective size with and without removing physically linked loci identified from a linkage map, a novel method for nonmodel organisms. Estimates of effective size were generally above 1000 and were biased downward when physically linked loci were not removed. Outlier tests based on genetic differentiation identified 733 loci and three genomic regions under putative selection. These markers and genomic regions are excellent candidates for future research and can be used to create high-resolution panels for genetic monitoring and population assignment. This work demonstrates the utility of genomic data to inform conservation in highly exploited species with shallow population structure.

196 citations


Journal ArticleDOI
TL;DR: Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data.
Abstract: Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data.

193 citations


Journal ArticleDOI
TL;DR: This work finds limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely.
Abstract: Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually.

Journal ArticleDOI
TL;DR: There is no one‐to‐one relationship between the rate of adaptation and population survival, because the former depends on relative fitness and the latter on absolute fitness, and previous estimates that sustainable rates of genetically based change usually do not exceed 0.1 haldanes are probably correct.
Abstract: An increasing number of studies demonstrate phenotypic and genetic changes in natural populations that are subject to climate change, and there is hope that some of these changes will contribute to avoiding species extinctions (‘evolutionary rescue’). Here, we review theoretical models of rapid evolution in quantitative traits that can shed light on the potential for adaptation to a changing climate. Our focus is on quantitative-genetic models with selection for a moving phenotypic optimum. We point out that there is no one-to-one relationship between the rate of adaptation and population survival, because the former depends on relative fitness and the latter on absolute fitness. Nevertheless, previous estimates that sustainable rates of genetically based change usually do not exceed 0.1 haldanes (i.e., phenotypic standard deviations per generation) are probably correct. Survival can be greatly facilitated by phenotypic plasticity, and heritable variation in plasticity can further speed up genetic evolution. Multivariate selection and genetic correlations are frequently assumed to constrain adaptation, but this is not necessarily the case and depends on the geometric relationship between the fitness landscape and the structure of genetic variation. Similar conclusions hold for adaptation to shifting spatial gradients. Recent models of adaptation in multispecies communities indicate that the potential for rapid evolution is strongly influenced by interspecific competition.

Journal ArticleDOI
TL;DR: It is demonstrated that reduced fitness of early‐generation hatchery fish may be a general phenomenon and future research should focus on determining the causes of those fitness reductions and whether they lead to long‐term reductions in the fitness of wild populations.
Abstract: Large numbers of hatchery salmon spawn in wild populations each year. Hatchery fish with multiple generations of hatchery ancestry often have heritably lower reproductive success than wild fish and may reduce the fitness of an entire population. Whether this reduced fitness also occurs for hatchery fish created with local- and predominantly wild-origin parents remains controversial. Here, we review recent studies on the reproductive success of such ‘early-generation’ hatchery fish that spawn in the wild. Combining 51 estimates from six studies on four salmon species, we found that (i) early-generation hatchery fish averaged only half the reproductive success of their wild-origin counterparts when spawning in the wild, (ii) the reduction in reproductive success was more severe for males than for females, and (iii) all species showed reduced fitness due to hatchery rearing. We review commonalities among studies that point to possible mechanisms (e.g., environmental versus genetic effects). Furthermore, we illustrate that sample sizes typical of these studies result in low statistical power to detect fitness differences unless the differences are substantial. This review demonstrates that reduced fitness of early-generation hatchery fish may be a general phenomenon. Future research should focus on determining the causes of those fitness reductions and whether they lead to long-term reductions in the fitness of wild populations.

Journal ArticleDOI
TL;DR: Experimental thermal evolution experiments and common garden warming experiments associated with space‐for‐time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypesic changes under climate change in aquatic invertebrates.
Abstract: We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respect to responses to temperature, there are many studies on temporal trait changes in phenology and body size in the wild that are believed to be driven by temperature increases, but there is a general lack of rigorous demonstration whether these trait changes are genetically based, adaptive, and causally driven by climate change. Current proof for genetic trait changes under climate change in freshwater invertebrates stems from a limited set of common garden experiments replicated in time. Experimental thermal evolution experiments and common garden warming experiments associated with space-for-time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypic changes under climate change in aquatic invertebrates. Apart from plastic and genetic thermal adjustments, also genetic photoperiod adjustments are widespread and may even dominate the observed phenological shifts.

Journal ArticleDOI
TL;DR: Emerging patterns that have come from the various initial model systems, the advantages and limitations of the technique and key areas where these methods may significantly advance the empirical and applied conservation practices are described.
Abstract: The emerging field of ecological genomics contains several broad research areas. Comparative genomic and conservation genetic analyses are providing great insight into adaptive processes, species bottlenecks, population dynamics and areas of conservation priority. Now the same technological advances in high-throughput sequencing, coupled with taxonomically broad sequence repositories, are providing greater resolution and fundamentally new insights into functional ecology. In particular, we now have the capacity in some systems to rapidly identify thousands of species-level interactions using non-invasive methods based on the detection of trace DNA. This represents a powerful tool for conservation biology, for example allowing the identification of species with particularly inflexible niches and the investigation of food-webs or interaction networks with unusual or vulnerable dynamics. As they develop, these analyses will no doubt provide significant advances in the field of restoration ecology and the identification of appropriate locations for species reintroduction, as well as highlighting species at ecological risk. Here, I describe emerging patterns that have come from the various initial model systems, the advantages and limitations of the technique and key areas where these methods may significantly advance our empirical and applied conservation practices.

Journal ArticleDOI
TL;DR: The transition and rationale for the move from genetic to genomic research in conservation biology and the utility of such research are explored and the idea of a ‘conservation prior’ is explored and how this can be determined by genomic data and used in the management of populations.
Abstract: Conservation genetics has provided important information into the dynamics of endangered populations. The rapid development of genomic methods has posed an important question, namely where do genetics and genomics sit in relation to their application in the conservation of species? Although genetics can answer a number of relevant questions related to conservation, the argument for the application of genomics is not yet fully exploited. Here, we explore the transition and rationale for the move from genetic to genomic research in conservation biology and the utility of such research. We explore the idea of a ‘conservation prior’ and how this can be determined by genomic data and used in the management of populations. We depict three different conservation scenarios and describe how genomic data can drive management action in each situation. We conclude that the most effective applications of genomics will be to inform stakeholders with the aim of avoiding ‘emergency room conservation’.

Journal ArticleDOI
TL;DR: Weak evidence for changes in body size through time as predicted by Bergmann's rule is found, suggesting that size decreases could be due to nonadaptive plasticity in response to changing environmental conditions.
Abstract: Climate change is expected to induce many ecological and evolutionary changes. Among these is the hypothesis that climate warming will cause a reduction in body size. This hypothesis stems from Bergmann's rule, a trend whereby species exhibit a smaller body size in warmer climates, and larger body size under colder conditions in endotherms. The mechanisms behind this rule are still debated, and it is not clear whether Bergmann's rule can be extended to predict the effects of climate change through time. We reviewed the primary literature for evidence (i) of a decrease in body size in response to climate warming, (ii) that changing body size is an adaptive response and (iii) that these responses are evolutionary or plastic. We found weak evidence for changes in body size through time as predicted by Bergmann's rule. Only three studies investigated the adaptive nature of these size decreases. Of these, none reported evidence of selection for smaller size or of a genetic basis for the size change, suggesting that size decreases could be due to nonadaptive plasticity in response to changing environmental conditions. More studies are needed before firm conclusions can be drawn about the underlying causes of these changes in body size in response to a warming climate.

Journal ArticleDOI
TL;DR: Accounts of recent phenotypic changes in wild mammal populations are reviewed with the purpose of critically evaluating whether climate change has been identified as the causal mechanism producing the observed change; whether the change is adaptive; and the relative influences of evolution and/or phenotypesic plasticity underlying the change.
Abstract: Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made.

Journal ArticleDOI
TL;DR: It is argued that continuing advances in molecular marker technologies provide major opportunities to deliberately design deployment strategies in cereals that can take advantage of the evolutionary pressures faced by target pathogens.
Abstract: Genetically controlled resistance provides plant breeders with an efficient means of controlling plant disease, but this approach has been constrained by practical difficulties associated with combining many resistance genes together and strong evolutionary responses from pathogen populations leading to subsequent resistance breakdown. However, continuing advances in molecular marker technologies are revolutionizing the ability to rapidly and reliably manipulate resistances of all types – major gene, adult plant and quantitative resistance loci singly or multiply into individual host lines. Here, we argue that these advances provide major opportunities to deliberately design deployment strategies in cereals that can take advantage of the evolutionary pressures faced by target pathogens. Different combinations of genes deployed either within single host individuals or between different individuals within or among crops, can be used to reduce the size of pathogen populations and generate patterns of disruptive selection. This will simultaneously limit immediate epidemic development and reduce the probability of subsequent evolutionary change in the pathogen for broader infectivity or increased aggressiveness. The same general principles are relevant to the control of noncereal diseases, but the most efficacious controls will vary reflecting the range of genetic options available and their fit with specific ecology and life-history combinations.

Journal ArticleDOI
TL;DR: This work combined climatic and landscape variables to model the current and future potential distribution of the black‐legged tick and the white‐footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions.
Abstract: Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250–500 km by 2050 – a rate of 3.5–11 km per year – and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution.

Journal ArticleDOI
TL;DR: How evolutionary principles can contribute to efficient conservation programmes is outlined, and articles from this special issue on Evolutionary conservation are introduced, outlining how each study or review provides tools and concepts to contribute to efficiency management of species or populations.
Abstract: Despite intense efforts, biodiversity around the globe continues to decrease. To cease this phenomenon, we urgently need a better knowledge not only of the true extent of biodiversity, but also of the evolutionary potential of species to respond to environmental change. These aims are the heart of the developing field of Evolutionary conservation. Here, after describing problems associated with implementing evolutionary perspectives into management, we outline how evolutionary principles can contribute to efficient conservation programmes. We then introduce articles from this special issue on Evolutionary conservation, outlining how each study or review provides tools and concepts to contribute to efficient management of species or populations. Ultimately, we highlight what we believe can be future research avenues for evolutionary conservation.

Journal ArticleDOI
TL;DR: The results suggest that frequently encountered water temperatures ≥19°C, which are capable of inducing a common CSR across species and populations, may increase risk of upstream spawning migration failure for pink and sockeye salmon.
Abstract: Characterizing the cellular stress response (CSR) of species at ecologically relevant temperatures is useful for determining whether populations and species can successfully respond to current climatic extremes and future warming. In this study, populations of wild-caught adult pink (Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon from the Fraser River, British Columbia, Canada, were experimentally treated to ecologically relevant ‘cool’ or ‘warm’ water temperatures to uncover common transcriptomic responses to elevated water temperature in non-lethally sampled gill tissue. We detected the differential expression of 49 microarray features (29 unique annotated genes and one gene with unknown function) associated with protein folding, protein synthesis, metabolism, oxidative stress and ion transport that were common between populations and species of Pacific salmon held at 19°C compared with fish held at a cooler temperature (13 or 14°C). There was higher mortality in fish held at 19°C, which suggests a possible relationship between a temperature-induced CSR and mortality in these species. Our results suggest that frequently encountered water temperatures ≥19°C, which are capable of inducing a common CSR across species and populations, may increase risk of upstream spawning migration failure for pink and sockeye salmon.

Journal ArticleDOI
TL;DR: Six genetic metrics and various sampling protocols for monitoring genetic erosion following demographic decline are tested, and the need to monitor genetic as well as other levels of biodiversity is demonstrated.
Abstract: Genetic biodiversity contributes to individual fitness, species' evolutionary potential, and ecosystem stability. Temporal monitoring of the genetic status and trends of wild populations' genetic diversity can provide vital data to inform policy decisions and management actions. However, there is a lack of knowledge regarding which genetic metrics, temporal sampling protocols, and genetic markers are sufficiently sensitive and robust, on conservation-relevant timescales. Here, we tested six genetic metrics and various sampling protocols (number and arrangement of temporal samples) for monitoring genetic erosion following demographic decline. To do so, we utilized individual-based simulations featuring an array of different initial population sizes, types and severity of demographic decline, and DNA markers [single nucleotide polymorphisms (SNPs) and microsatellites] as well as decline followed by recovery. Number of alleles markedly outperformed other indicators across all situations. The type and severity of demographic decline strongly affected power, while the number and arrangement of temporal samples had small effect. Sampling 50 individuals at as few as two time points with 20 microsatellites performed well (good power), and could detect genetic erosion while 80–90% of diversity remained. This sampling and genotyping effort should often be affordable. Power increased substantially with more samples or markers, and we observe that power of 2500 SNPs was nearly equivalent to 250 microsatellites, a result of theoretical and practical interest. Our results suggest high potential for using historic collections in monitoring programs, and demonstrate the need to monitor genetic as well as other levels of biodiversity.

Journal ArticleDOI
TL;DR: It is argued that closer integration of the two fields, especially of theoretical understanding, would yield new insights and accelerate progress on these applied problems, and link mathematical modelling approaches in these fields.
Abstract: Evolutionary responses that rescue populations from extinction when drastic environmental changes occur can be friend or foe. The field of conservation biology is concerned with the survival of species in deteriorating global habitats. In medicine, in contrast, infected patients are treated with chemotherapeutic interventions, but drug resistance can compromise eradication of pathogens. These contrasting biological systems and goals have created two quite separate research communities, despite addressing the same central question of whether populations will decline to extinction or be rescued through evolution. We argue that closer integration of the two fields, especially of theoretical understanding, would yield new insights and accelerate progress on these applied problems. Here, we overview and link mathematical modelling approaches in these fields, suggest specific areas with potential for fruitful exchange, and discuss common ideas and issues for empirical testing and prediction.

Journal ArticleDOI
TL;DR: Results showed an increase in genetic diversity and a twofold decrease in the extent of genetic differentiation among stocked populations when compared to unstocked, and suggest that under certain scenarios, the genetic impacts of stocking could be of short duration.
Abstract: Stocking represents the most important management tool worldwide to increase and sustain commercial and recreational fisheries in a context of overexploitation. Genetic impacts of this practice have been investigated in many studies, which examined population and individual admixture, but few have investigated determinants of these processes. Here, we addressed these questions from the genotyping at 19 microsatellite loci of 3341 adult lake trout (Salvelinus namaycush) from 72 unstocked and stocked lakes. Results showed an increase in genetic diversity and a twofold decrease in the extent of genetic differentiation among stocked populations when compared to unstocked. Stocked populations were characterized by significant admixture at both population and individual levels. Moreover, levels of admixture in stocked populations were strongly correlated with stocking intensity and a threshold value of total homogenization between source and stocked populations was identified. Our results also suggest that under certain scenarios, the genetic impacts of stocking could be of short duration. Overall, our study emphasizes the important alteration of the genetic integrity of stocked populations and the need to better understand determinants of admixture to optimize stocking strategies and to conserve the genetic integrity of wild populations.

Journal ArticleDOI
TL;DR: A review on evolutionary adaptation and phenotypic plasticity of temperature‐related traits in terrestrial invertebrates concludes that the evidence for adaptive evolution in melanization is good, but it is cautioned that genetic determination needs to be tested in each individual species, and complex genetic correlations may exist.
Abstract: To forecast the responses of species to future climate change, an understanding of the ability of species to adapt to long-term shifts in temperature is crucial. We present a review on evolutionary adaptation and phenotypic plasticity of temperature-related traits in terrestrial invertebrates. The evidence for adaptive evolution in melanization is good, but we caution that genetic determination needs to be tested in each individual species, and complex genetic correlations may exist. For phenological traits allochronic data sets provide powerful means to track climate-induced changes; however, rarely are responses deconstructed into evolutionary and plastic responses. Laboratory studies suggest climate change responses in these traits will be driven by both. For stress resistance, the evidence for shifts in traits is poor. Studies leaning heavily on Drosophila have demonstrated potential limits to evolutionary responses in desiccation and heat resistance. Quantifying the capacity for these species to respond plastically and extending this work to other taxa will be an important next step. We also note that, although not strictly speaking a species trait, the response of endosymbionts to heat stress requires further study. Finally, while clearly genetic, and possibly adaptive, the anonymous nature of latitudinal shifts in clines of genetic markers in Drosophila prevents further interpretation.

Journal ArticleDOI
TL;DR: It is shown that interspecific hybrid populations of Saccharomyces yeast adapt to grow in more highly degraded environments than intraspecific and parental crosses, resulting in survival rates far exceeding those of their ancestors.
Abstract: The resilience of populations to rapid environmental degradation is a major concern for biodiversity conservation. When environments deteriorate to lethal levels, species must evolve to adapt to the new conditions to avoid extinction. Here, we test the hypothesis that evolutionary rescue may be enabled by hybridization, because hybridization increases genetic variability. Using experimental evolution, we show that interspecific hybrid populations of Saccharomyces yeast adapt to grow in more highly degraded environments than intraspecific and parental crosses, resulting in survival rates far exceeding those of their ancestors. We conclude that hybridization can increase evolutionary responsiveness and that taxa able to exchange genes with distant relatives may better survive rapid environmental change.

Journal ArticleDOI
TL;DR: Analysis of available time series data for spawning adult abundance and body size indicate declines across the US ranges of anadromous alewife and blueback herring, with the most severe declines having occurred for populations belonging to the Southern New England and the Mid‐Atlantic Stocks.
Abstract: A major challenge in conservation biology is the need to broadly prioritize conservation efforts when demographic data are limited. One method to address this challenge is to use population genetic data to define groups of populations linked by migration and then use demographic information from monitored populations to draw inferences about the status of unmonitored populations within those groups. We applied this method to anadromous alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis), species for which long-term demographic data are limited. Recent decades have seen dramatic declines in these species, which are an important ecological component of coastal ecosystems and once represented an important fishery resource. Results show that most populations comprise genetically distinguishable units, which are nested geographically within genetically distinct clusters or stocks. We identified three distinct stocks in alewife and four stocks in blueback herring. Analysis of available time series data for spawning adult abundance and body size indicate declines across the US ranges of both species, with the most severe declines having occurred for populations belonging to the Southern New England and the Mid-Atlantic Stocks. While all alewife and blueback herring populations deserve conservation attention, those belonging to these genetic stocks warrant the highest conservation prioritization.

Journal ArticleDOI
TL;DR: The use of haploids coupled with GBS provides a robust pathway to rapidly develop genomic resources in nonmodel organisms; these QTL represent preliminary progress toward linking traits of conservation interest to regions in the Chinook salmon genome.
Abstract: Understanding how organisms interact with their environments is increasingly important for conservation efforts in many species, especially in light of highly anticipated climate changes. One method for understanding this relationship is to use genetic maps and QTL mapping to detect genomic regions linked to phenotypic traits of importance for adaptation. We used high-throughput genotyping by sequencing (GBS) to both detect and map thousands of SNPs in haploid Chinook salmon (Oncorhynchus tshawytscha). We next applied this map to detect QTL related to temperature tolerance and body size in families of diploid Chinook salmon. Using these techniques, we mapped 3534 SNPs in 34 linkage groups which is consistent with the haploid chromosome number for Chinook salmon. We successfully detected three QTL for temperature tolerance and one QTL for body size at the experiment-wide level, as well as additional QTL significant at the chromosome-wide level. The use of haploids coupled with GBS provides a robust pathway to rapidly develop genomic resources in nonmodel organisms; these QTL represent preliminary progress toward linking traits of conservation interest to regions in the Chinook salmon genome.

Journal ArticleDOI
TL;DR: Broad geographic patterns of neutral and non‐neutral variation demonstrated here can be used to accommodate priorities for regional management and inform long‐term conservation of steelhead trout in the Columbia River region.
Abstract: Mounting evidence of climatic effects on riverine environments and adaptive responses of fishes have elicited growing conservation concerns. Measures to rectify population declines include assessment of local extinction risk, population ecology, viability, and genetic differentiation. While conservation planning has been largely informed by neutral genetic structure, there has been a dearth of critical information regarding the role of non-neutral or functional genetic variation. We evaluated genetic variation among steelhead trout of the Columbia River Basin, which supports diverse populations distributed among dynamic landscapes. We categorized 188 SNP loci as either putatively neutral or candidates for divergent selection (non-neutral) using a multitest association approach. Neutral variation distinguished lineages and defined broad-scale population structure consistent with previous studies, but fine-scale resolution was also detected at levels not previously observed. Within distinct coastal and inland lineages, we identified nine and 22 candidate loci commonly associated with precipitation or temperature variables and putatively under divergent selection. Observed patterns of non-neutral variation suggest overall climate is likely to shape local adaptation (e.g., potential rapid evolution) of steelhead trout in the Columbia River region. Broad geographic patterns of neutral and non-neutral variation demonstrated here can be used to accommodate priorities for regional management and inform long-term conservation of this species.